Rapid Prototyping Kit

PowerMedusa®

ユーザーズマニュアル

MU200-EC6S

2005.09.02 Ver.2.1

はじめに

このたびは、当社製品をご愛用いただき誠にありがとうございます。

「MU200-EC6S キット構成」で、梱包内容をご確認ください。

本製品へ半田付け等の加工を行われた場合は、保証の対象外となることがございますのでご注意ください。

安全に関するお願い

本製品は、精密機器のため落下などによる衝撃、振動、静電気による電気部品破壊などが生じないように、取り扱いには十分注意してください。

当社は、品質および信頼性の向上に努めておりますが、ご使用により万一障害が生じた場合、当社は責任を負いかねますのでご了承ください。

本製品は、人命にかかわるような状況の下で使用される機器あるいはシステムに用いられることを目的として設計、製造されたものではありません。本製品を、原子力制御用機器あるいはシステムなど、特殊用途にご検討の際には、代理店へご照会ください。

製品の内容につきましては万全を期しておりますが、万一ご不審な点や、誤りなどがございましたら、お手数ではござい ますが代理店までご連絡ください。

本製品は以下のような場所で保管・使用しないでください。

故障の原因になることがあります。

- 振動や衝撃の加わる場所
- 直射日光のあたる場所
- 湿気やホコリが多い場所
- 温度差の激しい場所
- 熱の発生する物の近く(ストーブ、ヒータなど)
- 強い磁力電波の発生する物の近く(磁石、ディスプレイ、スピーカ、ラジオ、無線機など)
- 水気の多い場所(台所、浴室など)
- 傾いた場所
- 腐食性ガス雰囲気中(CI2、H2S、NH3、SO2、NOXなど)
- 静電気の影響の強い場所

本製品は精密部品です。以下の注意をしてください。

- ご使用の前に必ず付属のスペーサー、ナット(4組)を本製品(ボード本体)に取り付けてください。
- 落としたり、衝撃を加えない
- ◆ 本製品の上に水などの液体や、クリップなどの小部品を置かない
- 重いものを上にのせない
- 濡れた手で本製品を扱わない
- 本製品のそばで飲食・喫煙などをしない
- 本製品内部およびコネクタ部に液体、金属、たばこの煙などの異物が入らないようにしてください。
- 本製品を結露させたまま使わない。

時間をおいて、結露がなくなってからお使いください。本製品を寒い所から暖かい場所へ移動したり、部屋の温度が 急に上昇すると、表面・内部が結露する場合があります。そのまま使うと誤動作や故障の原因となる場合があります。

- 動作中にケーブルを激しく動かさないでください。
 - 接触不良およびそれによるデータ破壊などの原因となることがあります。
- PowerMedusa は開発設計・検証プロトタイプキットで家庭の住宅環境でご使用頂くように設計しておりませんので、 ご使用の環境によってはラジオ・テレビ等への電波妨害を引き起こすことがあります。この場合にはお客様にて適切 な対策を取って頂きます様お願い致します。
- QuartusII、MAX+PLUSII 等のツ・ルは供給者が動作保証する環境でご使用ください。
- 本製品(ソフトウェア含む)は、日本国内仕様です。

本製品を日本国外で使用された場合、弊社は一切責任を負いかねます。また、弊社は本製品に関し、日本国外への技術サポート、およびアフターサービスなどを行っておりません。あらかじめ、ご了承ください。

目 次

第1章 MU200-EC6S キット構成	5
第 2 章 MU200 - EC6S	7
2.1 コンポーネント仕様	7
2.2 ブロック構成図	g
2.3 各部の機能と名称	10
2.3.1 電源	10
2.3.2 コンフィギュレーション	
2.3.3 クロックとリセット回路	15
2.3.4 スイッチ	17
2.3.5 ブザー	19
2.3.6 LED	
2.3.77セグメント LED	21
2.3.8 240 ピンコネクタ部	25
2.3.9 EIA232 インタフェース	31

第1章

MU200-EC6S キット構成

第1章 MU200-EC6S キット構成

「MU200-EC6S」は、以下の製品から構成されます。

1.MU200-EC6S 本体

2.ユーザーズマニュアル

本書です。接続表、配線表を含みます。

3.付属品

●スペーサー、ナット
4 組
●ロータリスイッチ用ノブ
● 電源用コネクタ
♪ ハウジング(日本圧着端子社製 VHR-3N)
▶ コンタクト(日本圧着端子社製 SVH-21T-1.1)

- CD-R・・・・・・・1枚
 - ▶ ・ユーザーズマニュアル

 - ◇ csf ファイル作成用ピンアサイン表
 - ▶ ・サンプル回路
 - ◇ 動作ファイルと仕様書

4.保証書

保証書は製品に同封しています。

5.梱包品

スンせかとっッれい数用ーかスりいいでは、これで取りまる合きになったく通さをかれて頂性を外でで取りする名合いの場合にな使用を外でで取りする名合いの場合にないのがど名替合ず一直よって、国に称て入れ等きりにでがど名替合ず一直よっまままます。

ご使用の前には必ず

スペーサー、ナット 4 組全てを本体に取り 付け願います。 取り付けずに使用さ

れた場合、故障の原因 となりますのでご注

意願います。

CD-R

第2章

MU200 - EC6S

第	2章 MU200 - EC6S······	7
2	2.1 コンポーネント仕様	7
2	2.2 ブロック構成図	9
2	2.3 各部の機能と名称	·10
	2.3.1 電源	·10
	2.3.2 コンフィギュレーション	· 11
	2.3.3 クロックとリセット回路	
	2.3.4 スイッチ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	2.3.5 ブザー	. 19
	2.3.6 LED····	
	2.3.7 7 セグメント LED	
	2.3.8 240 ピンコネクタ部	.25
	2.3.9 EIA232 インタフェース	.31

第2章 MU200 - EC6S

*1 搭載FPGAの仕様に ついては、ALTERA社 のデータブックを参照 してください。

2.1 コンポーネント仕様

(1) 搭載 FPGA

ALTERA社Cycloneデバイスファミリ EP1C6 PQFP240ピンパッケージFPGA*1を搭載しています。

(2) 定格電源

+5V単一電源(DC+5V: ±5%)・・・・MU200-EC6S単体使用時

(2) コンフィギュレーション(回路の書き込み)

QuartusIIからコンフィギュレーションROM(EPCS1)又はFPGA(Cyclone、EPM7064)へ 回路を書き込むことができます。

D-sub25ピンオスコネクタ、又はJTAG10ピンヘッダーから、コンフィギュレーションできます。詳細は2.3.2 コンフィギュレーションをご参照ください。

(4) クロック回路

発振器を搭載しFPGA (Cyclone)にクロックを供給しています。

クロックの周波数はロータリスイッチにより 1.0Hz_40MHzの範囲の15種類と、1クロックスイッチ押下毎に1クロックを発生させることもできます。

詳細は2.3.3 クロックとリセット回路をご参照ください。

(5) リセット回路

スイッチによるリセットが可能です。

(6) 入出力および表示装置

・ 7 セグメント LED	8個
· LED	8 個
・テンキー	20個
・8 ビットディップスイッチ	2個
・ロータリスイッチ	2個
・ブザー	1個

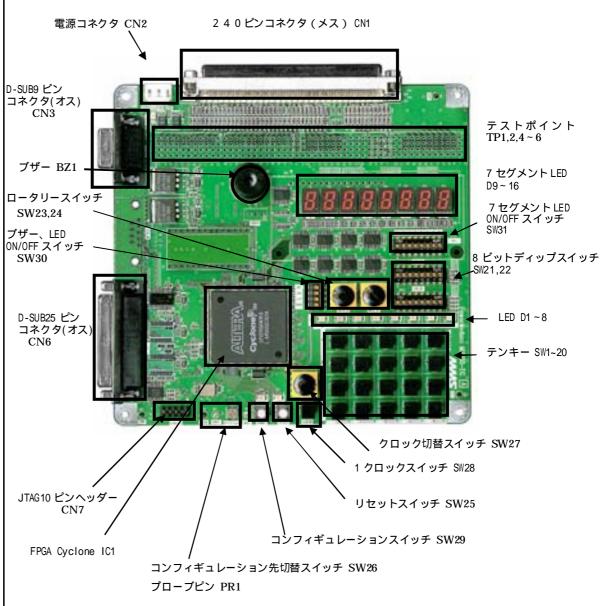
(7) 外部インターフェース

FPGA (Cyclone)の入出力信号と接続されたインタフェースコネクタを表2.1-1に示します。

スペーサーを含まな い高さです。スペーサ ーを含む場合の高さ は35mm です。

表2.1-1 外部インターフェース用コネクタ

コネクタの種類	個 数	用途
240ピンコネクタ(メス)	1個	MU200シリーズとの接続用
D-SUB9ピンコネクタ(オス)	1個	EIA232通信用
D-SUB25ピンコネクタ(オス)	1個	コンフィギュレーション用
JTAG10 ピンヘッダー	1個	コンフィギュレーション用


(8) 基板最大外形寸法

 $(W \times D \times H) 156 \times 156 \times 20*5 \text{ (mm)}$

(9) 使用環境

温度:10 ~40

2.2 ブロック構成図

コンフィギュレーション ROM IC8 、 クロック分周、リセット用 FPGA IC5 は 裏面 (S 面) に実装しています。

図2.2-1 ブロック構成図

2.3 各部の機能と名称

2.3.1 電源

+5 / の電源を必要とします。

FPGA デバイス(Cyclone、EPM7064AE)と EPCS1 に必要な 1.5V と 3.3V 電圧を搭載 レギュレータにより生成します。最大電流は 1.5V 3A,3.3A 3A です。

A C アダプタ (別売) などの電源装置より、電源コネクタ (CN2) に + 5 V 電源を入力してください。

電源、GND は 240 ピンコネクタに接続しているので 240 ピンコネクタで接続した外部 ボードへ電源を供給することや、外部ボードから電源供給を受けることもできます。 電源供給の状態を示す LED(電源コネクタ横)を搭載しており、供給されている時に点灯 します。

(1) 構成

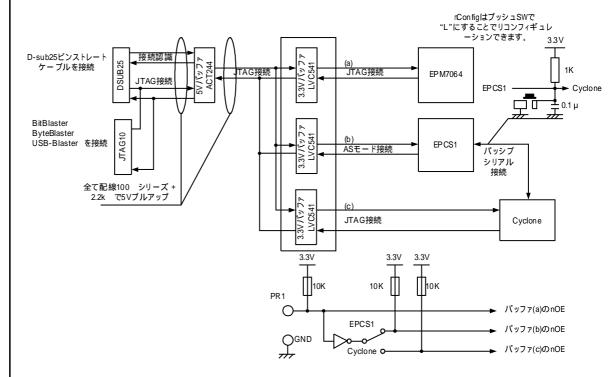
図 2.3.1-1 電源の構成

(2)接続

<u>表 2.3.1-1</u> 電源コネクタ CN2

コネクタ	品名	接続方式
CN2	B3P-VH	ワンタッチ接続
	(より製 ベースポスト)	付属の電源コネクタ (VHR-3N (JST製 ソウジング)
		SM-2IT-1 .1 (JST製コンタクト))を使用しケーブはいてが
		必要です。

ネクタ経由で外部への電源供給用として使用できます。 EC6S 搭載回路の電源としては使用していません。


+3.3/5V は240ピンコ

外部ボードの仕様に 合わせて電源を入力 してください。また、 単体で使用する場合 は、+3.3/5Vの入力は 不要です。

2.3.2 コンフィギュレーション

コンフィギュレーションROM (EPCS1)又はFPGA (Cyclone、EPM7064)へ 回路を書き込むことができます。

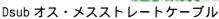
(1) コンフィギュレーション回路の構成

JTAG_SW (PR1)	トグルSW (SW26)	バッファ(a)	バッファ(b)	バッファ(c)
GND	Χ	active	negative	negative
open	EPCS1	negative	active	negative
open	Cyclone	negative	negative	active

図 2.3.2-1 コンフィギュレーションの構成

MasterBlaster ケーブルには対応しておりません。

(2) ダウンロードケーブル


ケーブル(別売)はDsubオス・メスストレートケーブル、又はByteBlasterMV、ByteBlaster 、USB-Blasterが使用できます。


接続コネクタはD-SUB25ピンコネクタ(オス) CN6 とJTAG10ピンヘッダー CN7 を搭載しています。

<u>Dsubオス・メスストレートケーブルを使用する場合はQuartusIIでケーブル種類を</u> <u>Byte Blaster 』に設定してください。</u>

なお、故障の原因となりますので、同時にD-SUB25ピンコネクタとJTAG10ピン ヘッダーにケーブルを接続しないようにしてください。

(3) ダウンロードモード

書き込み先がROMの場合はASモード、FPGAの場合はJTAGモードになります。 モード設定はQuartus で行ってください。

(4) 書き込み先(コンフィギュレーション先)の切替

コンフィギュレーション先切替スイッチSW26とプローブピンPR1により、書き込み先を切り替えることができます。

切替時スイッチ、プローブ設定表を表2.3.2-1に示します。

表2.3.2-1 切替スイッチ、プローブ設定表

書き込み先デバイス (コンフィギュレーション先)	切替スイッチ SW26	プローブピン PR1
ROM (EPCS1)	EPCS	OPEN
FPGA (Cyclone)	Cycl	OPEN
FPGA (EPM7064)	don't care	GNDに接続

表2.3.2-2 コンフィギュレーション

		書き込み先(ダウンロードモード)				
ダウンロード	コネクタ	ROM	Cyclone	EPM7064		
ケーブル		(AS)	(JTAG)	(JTAG)		
Dsubオス・メススト レートケーブル	D-SUB25 ピン コネクタ(オス) CN6					
ByteBlaster MV	JTAG10ピン ヘッダー CN7	×				
ByteBlaster II	ベッター CN7					
USB-Blaster						

書き込み可能です。 × 対応しておりません。

(5) コンフィギュレーション実行

FPGA (Cyclone IC1)へ直接コンフィギュレーションする方法と、コンフィギュレーション ROM (EPCS1 IC8)を経由して間接的に行う2つの方法があります。

Quartus Ver4.0とMU200-EC シリーズによる使用方法 (ファイル名 Quartus Ver4.0使用方法.pdf)をご参考願います。

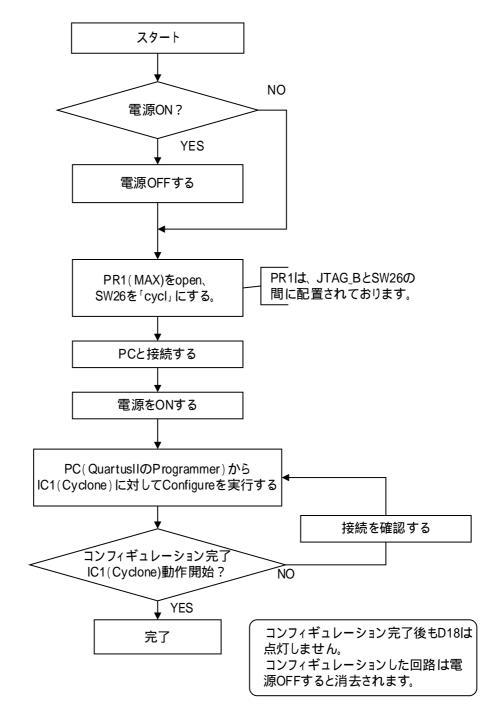


図2.3.2-2 直接コンフィギュレーションの手順

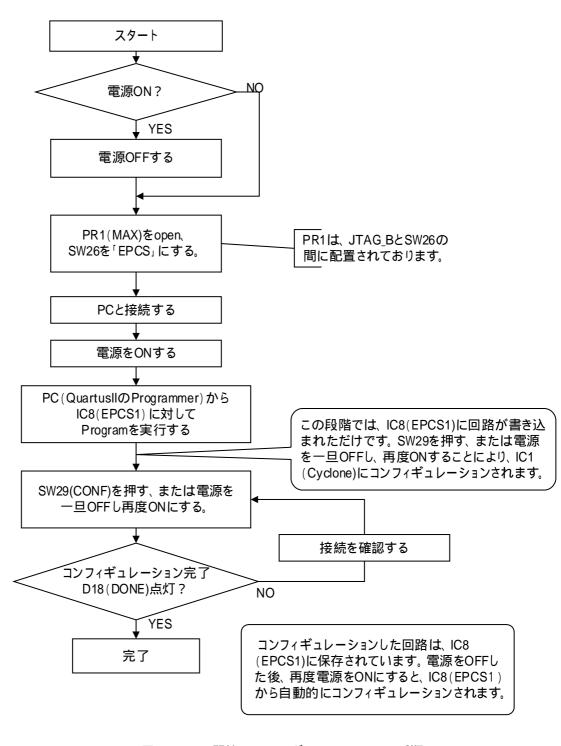


図2.3.2-3 間接コンフィギュレーションの手順

2.3.3 クロックとリセット回路

クロック分周、リセット用 FPGA (EPM7064)のクロック分周回路・リセット回路の構成を以下に示します。

(添付ファイル CLK_DIV.v、mu200_7k.v をご参照ください)

(1) 構成

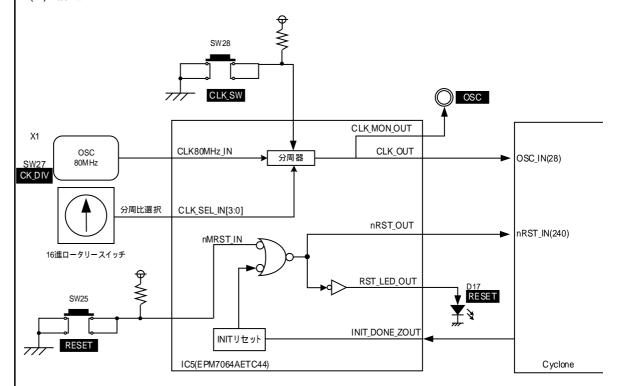


図 2.3.3-1 クロック分周、リセット用 FPGA (EPM7064) の出荷時設定

(2) 機能

搭載の発振器で生成される80MHzのクロックを分周し、FPGA (Cyclone)に供給しています。

分周比はクロック切替スイッチ SW27で選択可能です。

設定できる周波数は表2.3.3-1の通りです。

なお、周波数はテストピン(OSC) PR3でモニターできます。

表 2.3.3-1 周波数切替

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
周																
波	40	20	10	5	1.25	312.5	78.1	19.5	9.8	4.9	2.44	1.22	610	305	1.0	
数	MHz	MHz	MHz	MHz	MHz	kHz	kHz	kHz	kHz	kHz	kHz	kHz	Hz	Hz	Hz	

1クロックスイッチ SW28 を有効にします。

スイッチ押下毎にクロック分周、リセット用 FPGA (EPM7064)を経由して FPGA (Cyclone)に1パルスのクロックを供給します。

(3) リセット部の機能

リセット信号(L レベル)はリセット用 FPGA (EPM7064) から FPGA (Cyclone) へ出力されます。

(a) マニュアルリセット

リセットスイッチ(SW25)が押下されている間、リセット信号が出力されます。

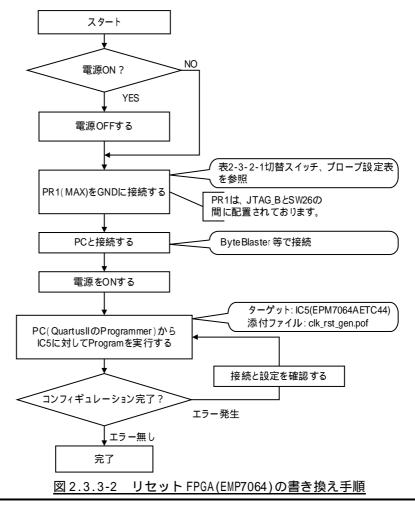
(b) 初期リセット

FPGA (Cyclone) のコンフィギュレーション完了後、3msec間 リセット信号が 出力されます。

表 2.3.3-3 リセット信号のピン番と信号名

FPGA (EPM7064)	FPGA (Cyclone)			
信号名	ピン番号信号名			
n RST_OUT	240	n RST_IN		

(4) リセット用 FPGA (EPM7064) の書き換えと出荷時設定に戻す手順


所望される周波数が表2.3.3-1に示す周波数にない場合は、FPGA(EPM7064)の回路を変更することで生成することができます。

但し、PLL回路を搭載していませんので分周で生成される値のみとなります。

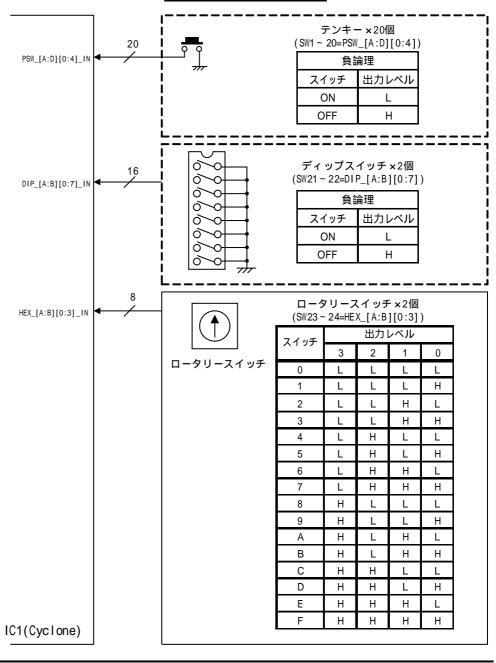
<u>回路を変更する際は、ピン割り当てや信号の入出力方向を誤ると、信号同士が衝突し、</u> デバイス等が破壊する危険がありますのでご注意願います。

変更された場合は無償保証の適用外となります。

回路の変更、又は出荷時設定に戻す手順は以下の図2.3.3-2の通りです。

16

2.3.4 スイッチ


テンキー SW1 ~ 20 、 8 ビットディップスイッチ SW21,22 、ロータリースイッチ SW23,24 は、FPGA (Cyclone)の I/O ピンが接続されています。 FPGA Cyclone への入力装置として使用できます。 ピンは固定になっています。

(1) 構成

スイッチの論理

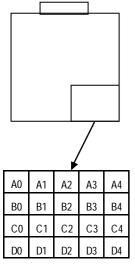

入力装置	論理	備考
テンキー	負論理	『ON』時 L レベルが
8 ビットディップスイッチ		Cyclone へ出力
ロータリースイッチ	正論理	設定値が Cyclone へ出力

図 2.3.4-1 スイッチの構成

テンキーは基板上で 下記の様に配置され ています。

(2)配線

表 2.3.4-1 スイッチ入力部配線表

	FPG	A (Cyclone)	スイッチ	·入力部
	ピン番号	信号名	スイッチ名	備考
	2	PSW_AO_IN	PSW_A0	
	3	PSW_A1_IN	PSW_A1	
	4	PSW_A2_IN	PSW_A2	
	5	PSW_A3_IN	PSW_A3	
	6	PSW_A4_IN	PSW_A4	
	7	PSW_BO_IN	PSW_B0	1
テ	8	PSW_B1_IN	PSW_B1	1
ン	1 1	PSW_B2_IN	PSW_B2	1
+	1 2	PSW_B3_IN	PSW_B3	1
	1 3	PSW_B4_IN	PSW_B4	
	1 4	PSW_CO_IN	PSW_C0	負論理
	1 5	PSW_C1_IN	PSW_C1	1
	1 6	PSW_C2_IN	PSW_C2	
	1 7	PSW_C3_IN	PSW_C3	
	1 8	PSW_C4_IN	PSW_C4	1
	1 9	PSW_DO_IN	PSW_D0	
	2 0	PSW_D1_IN	PSW_D1	
	2 1	PSW_D2_IN	PSW_D2	
	2 3	PSW_D3_IN	PSW_D3	
	4 1	PSW_D4_IN	PSW_D4	
	2 1 4	HEX_AO_IN	HEX_A0	LSB
	2 1 5	HEX_A1_IN	HEX_A1	正論理
タリ	2 1 6	HEX_A2_IN	HEX_A2	
ス	2 1 7	HEX_A3_IN	HEX_A3	MSB
1	2 2 0	HEX_BO_IN	HEX_B0	LSB
ッ	2 0 4	HEX_B1_IN	HEX_B1	正論理
チ	198	HEX_B2_IN	HEX_B2	
	103	HEX_B3_IN	HEX_B3	MSB
	2 1 8	DIP_AO_IN	DIP_A0]
	2 1 9	DIP_A1_IN	DIP_A1	
	2 2 2	DIP_A2_IN	DIP_A2	
	2 2 3	DIP_A3_IN	DIP_A3	
デ	2 2 4	DIP_A4_IN	DIP_A4	
1	2 2 5	DIP_A5_IN	DIP_A5	4. +∧ T⊞
ップ	2 2 6	DIP_A6_IN	DIP_A6	負論理
プラ	227	DIP_A7_IN	DIP_A7	
スイ	2 2 8	DIP_BO_IN	DIP_B0	
コッ	2 3 3	DIP_B1_IN	DIP_B1	
チ	2 3 4	DIP_B2_IN	DIP_B2	
	2 3 5	DIP_B3_IN	DIP_B3	
	2 3 6	DIP_B4_IN	DIP_B4	
	2 3 7	DIP_B5_IN	DIP_B5	
	2 3 8	DIP_B6_IN	DIP_B6	
	2 3 9	DIP_B7_IN	DIP_B7	

2.3.5 ブザー

ブザー BZ1 は、FPGA (Cyclone)の I/O ピンが接続されています。

FPGA Cyclone の出力装置として使用できます。

ピンは固定になっています。

(1) 構成

ブザー回路はブザーBZ1 とトランジスタ、ブザーON/OFF スイッチ SW30 で構成しています。

FPGA Cyclone からのパルス周波数により駆動します。

周波数可変範囲は約0.2kHz~5kHzです。

ブザーON/OFF スイッチ SW30-1(BZ)をOFF することで(FPGA の出力に関係なく)消音できます。

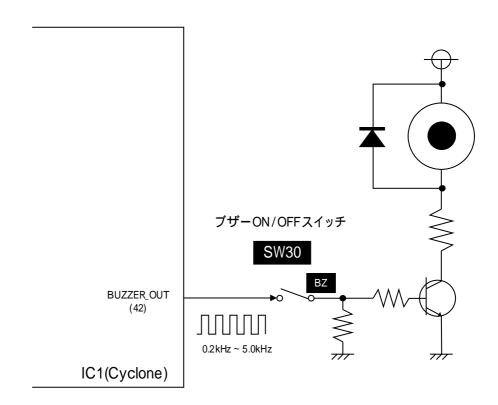


図 2.3.5-1 ブザーの構成

(2)配線

表 2.3.5-1 ブザーと FPGA Cyclone の配線

FPGA Cyclone		ブザーON/OFF スイッチ		
ピン番号	信号名	スイッチ	設定	
42	BZ_OUT	SW30-1 (BZ)	『OFF』で消音	

2.3.6 LED

LED は FPGA (Cyclone) の I/O ピンがドライバを通じて接続されています。 FPGA Cyclone の出力装置として使用できます。 ピンは固定になっています。

LED は正論理で点灯します。

LED ON/OFF スイッチ SW30-2(LED)を OFF することで全ての LED を (FPGA の出力に関係なく)消灯できます。

(1) 構成

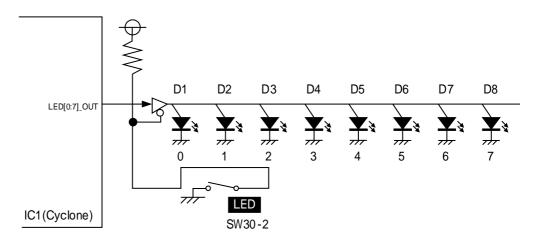


図2.3.6-1 LED の構成

(2) 配線

表 2.3.6-1 LED と FPGA Cyclone の配線

LED	FP	GA Cyclone	LED ON/OFF
	ピン番号	信号名	スイッチ
LED0	47	LEDO_OUT	
LED1	48	LED1_OUT	
LED2	49	LED2_OUT	
LED3	50	LED3_OUT	SW30-2 (LED)
LED4	53	LED4_OUT	
LED5	54	LED5_OUT	
LED6	55	LED6_OUT	
LED7	56	LED7_OUT	

2.3.7 7セグメント LED

7 セグメント LED は FPGA (Cyclone) の 1/0 ピンがドライバを通じて接続されています。

FPGA Cyclone の出力装置として使用できます。

7 セグメント LED ON/OFF スイッチ SW31 を OFF することでスイッチに対応した 7 セグメント LED を (FPGA の出力に関係なく)消灯できます。 ピンは固定になっています。

(1) 構成

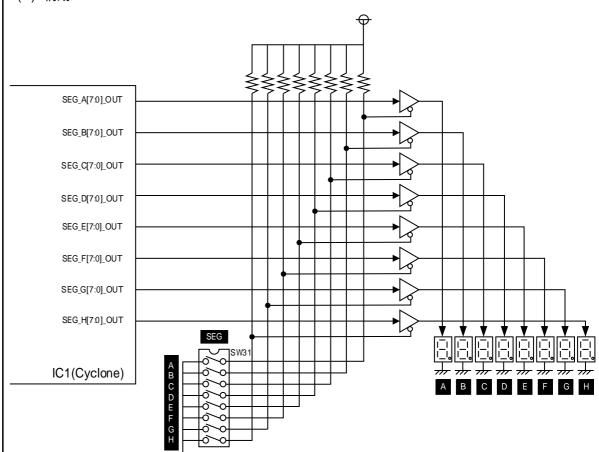


図2.3.7-1 7セグメントの構成

(3) デコード

7セグメント LED は正論理で点灯します。

各7セグメントLEDのビット割り当てを図2.3.7-2に、デコードの真理値表を表2.3.7-1に示します。

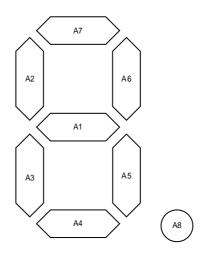


図2.3.7-2 7セグメントのビット割当 (SEG_A の場合)

表 2.3.7-1 7 セグメントのデコード値 (SEG_A の場合)

A[70]	View	A[70]	View	A[70]	View	A[70]	View
1111 1100		0110 0110		1111 1110		0001 1010	
0110 0000		1011 0110		1111 0110		0111 1010	
1101 1010	- - -	1011 1110	I_I_I	1110 1110		1001 1110	_ _
1111 0010		1110 0000		0011 1110	-	1000 1110	

(4)配線

表 2.3.7-2 7 セグメント LED と FPGA Cyclone の配線 (1/2)

FPGA Cyc	lone	7 セグメント LED	7 セグメント
ピン番号	信号名	ON/OFF スイッチ	LED
133	SEG_A0		SEG_A0
134	SEG_A1		SEG_A1
135	SEG_A2	OWO4 4/OFO A)	SEG_A2
136	SEG_A3	SW31-1(SEG_A) 『OFF(open) 』 で、	SEG_A3
137	SEG_A4	Cyclone の信号が無効	SEG_A4
138	SEG_A5	oyerone or in $\neg n \xrightarrow{m} n$	SEG_A5
139	SEG_A6		SEG_A6
140	SEG_A7		SEG_A7
123	SEG_B0		SEG_B0
124	SEG_B1		SEG_B1
125	SEG_B2	SW31-2(SEG_B)	SEG_B2
126	SEG_B3	『OFF(open)』で、	SEG_B3
127	SEG_B4	Cyclone の信号が無効	SEG_B4
128	SEG_B5	oyorone or H ¬13 mx	SEG_B5
131	SEG_B6		SEG_B6
132	SEG_B7		SEG_B7
115	SEG_CO		SEG_CO
116	SEG_C1		SEG_C1
117	SEG_C2	SW31-3(SEG_C)	SEG_C2
118	SEG_C3	『OFF(open)』で、	SEG_C3
119	SEG_C4	Cyclone の信号が無効	SEG_C4
120	SEG_C5	oyotono oy in 313 mixis	SEG_C5
121	SEG_C6		SEG_C6
122	SEG_C7		SEG_C7
101	SEG_D0		SEG_D0
104	SEG_D1		SEG_D1
105	SEG_D2	SW31-4(SEG_D)	SEG_D2
106	SEG_D3	SW31-4(SEG_D) 『OFF(open) 』で、	SEG_D3
107	SEG_D4	Cyclone の信号が無効	SEG_D4
108	SEG_D5	-, - : 3110 02 IA 310 MIND	SEG_D5
113	SEG_D6		SEG_D6
114	SEG_D7		SEG_D7

表 2.3.7-2 7 セグメント LED と FPGA Cyclone の配線 (2/2)

FPGA Cyc	lone	7 セグメント LED	7 セグメント
ピン番号	信号名	ON/OFF スイッチ	LED
87	SEG_E0		SEG_E0
88	SEG_E1		SEG_E1
93	SEG_E2	SW31-5(SEG_E)	SEG_E2
94	SEG_E3	『OFF(open)』で、	SEG_E3
95	SEG_E4	Cyclone の信号が無効	SEG_E4
98	SEG_E5	Cyclone of II 313 MXXII	SEG_E5
99	SEG_E6		SEG_E6
100	SEG_E7		SEG_E7
77	SEG_F0		SEG_F0
78	SEG_F1		SEG_F1
79	SEG_F2	SW31-6(SEG_F)	SEG_F2
82	SEG_F3	『OFF(open)』で、	SEG_F3
83	SEG_F4	Cyclone の信号が無効	SEG_F4
84	SEG_F5		SEG_F5
85	SEG_F6		SEG_F6
86	SEG_F7		SEG_F7
65	SEG_G0		SEG_G0
66	SEG_G1		SEG_G1
67	SEG_G2	SW31-7(SEG_G)	SEG_G2
68	SEG_G3	『OFF(open)』で、	SEG_G3
73	SEG_G4	Cyclone の信号が無効	SEG_G4
74	SEG_G5	,	SEG_G5
75	SEG_G6		SEG_G6
76	SEG_G7		SEG_G7
57	SEG_H0		SEG_H0
58	SEG_H1		SEG_H1
59	SEG_H2	SW31-8(SEG_H)	SEG_H2
60	SEG_H3	『OFF(open)』で、	SEG_H3
61	SEG_H4	Cyclone の信号が無効	SEG_H4
62	SEG_H5	5, 2 : 3 : 6 5 IA 5 10 MIND	SEG_H5
63	SEG_H6		SEG_H6
64	SEG_H7		SEG_H7

2.3.8 240 ピンコネクタ部

240 ピンコネクタ(メス)には搭載の各デバイスが接続されています。

(1) 構成

図2.3.8-1の通り、各デバイスに接続されています。 また、表2.3.8.1-1にテストポイント1,2,4~6を含めた接続を示します。

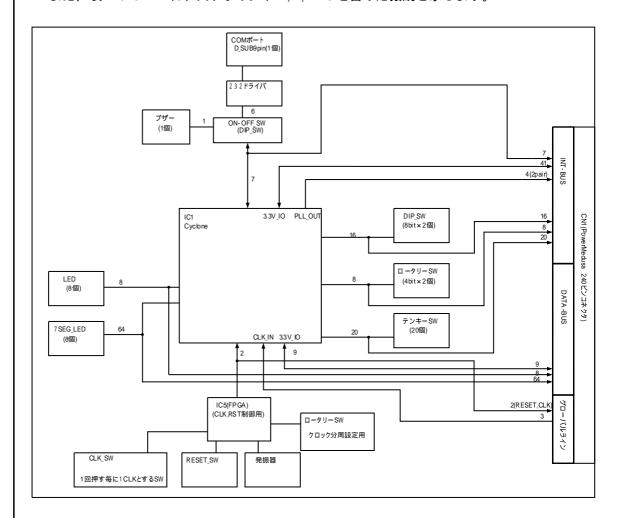


図 2.3.8-1 240 ピンコネクタの構成

(2) 配線

表 2.3.8.1-1 240 ピンコネクタ (CN1) 配線表

信号名	IC1(Cyclone)	スイッチ	CN1ピン番号	TP群番号	TPピン番号	接続先	電源系
	ピン番号						
3.3V_IO / SEG_F7_OUT	86	SW31-6(SEG_F)	120		1	SEG_F7	
3.3V_IO / SEG_F6_OUT	85	『OFF(open)』で、	119		2	SEG_F6	***************************************
3.3V_IO / SEG_F5_OUT	84	Cycloneの信号が 無効			3	SEG_F5	***************************************
3.3V_IO / SEG_F4_OUT	83	無知	117		4	SEG_F4	
3.3V_IO / SEG_F3_OUT	82		116		5	SEG_F3	***************************************
3.3V_I0 / SEG_F2_OUT	79		115		6	SEG_F2	
3.3V_IO / SEG_F1_OUT	78		114		7	SEG_F1	***************************************
3.3V_I0 / SEG_F0_OUT	77		113		8	SEG_F0	
3.3V_IO / SEG_E7_OUT	100	SW31-5(SEG_E)	112		9	SEG_E7	***************************************
3.3V_IO / SEG_E6_OUT	99	『OFF(open)』で、	111		10	SEG_E6	
3.3V_IO / SEG_E5_OUT	98	Cycloneの信号が 無効	110		11	SEG_E5	***************************************
3.3V_IO / SEG_E4_OUT	95	無効	109		12	SEG_E4	
3.3V_IO / SEG_E3_OUT	94		108		13	SEG_E3	***************************************
3.3V_IO / SEG_E2_OUT	93		107		14	SEG_E2	•••••
3.3V_IO / SEG_E1_OUT	88		106		15	SEG_E1	
3.3V_IO / SEG_EO_OUT	87		105		16	SEG_E0	
3.3V_IO / SEG_D7_OUT	114	SW31-4(SEG_D)	104		17	SEG_D7	***************************************
3.3V_IO / SEG_D6_OUT	113	『OFF(open)』で、	103		18	SEG_D6	***************************************
3.3V_IO / SEG_D5_OUT	108	Cycloneの信号が		TD4	19	SEG_D5	
3.3V_IO / SEG_D4_OUT	107	無効	101	TP4	20	SEG_D4	
3.3V_IO / SEG_D3_OUT	106		100		21	SEG_D3	
3.3V_IO / SEG_D2_OUT	105		99		22	SEG_D2	***************************************
3.3V_IO / SEG_D1_OUT	104		98		23	SEG_D1	
3.3V_IO / SEG_DO_OUT	101		97		24	SEG_D0	
3.3V_IO / SEG_C7_OUT	122	SW31-3(SEG_C)	96		25	SEG_C7	
3.3V_IO / SEG_C6_OUT	121	『OFF(open)』で、	95		26	SEG_C6	
3.3V_IO / SEG_C5_OUT	120	Cycloneの信号が	94		27	SEG_C5	***************************************
3.3V_IO / SEG_C4_OUT	119	無効	93		28	SEG_C4	***************************************
3.3V_IO / SEG_C3_OUT	118		92		29	SEG_C3	
3.3V_IO / SEG_C2_OUT	117		91		30	SEG_C2	
3.3V_IO / SEG_C1_OUT	116		90		31	SEG_C1	***************************************
3.3V_IO / SEG_CO_OUT	115		89		32	SEG_CO	
3.3V_IO / SEG_B7_OUT	132	SW31-2(SEG_B)	88		33	SEG_B7	
3.3V_IO / SEG_B6_OUT	131	『OFF(open)』で、	87		34	SEG_B6	
3.3V_IO / SEG_B5_OUT	128	Cycloneの信号が 無効			35	SEG_B5	
3.3V_IO / SEG_B4_OUT	127	無効	85		36	SEG_B4	
3.3V_IO / SEG_B3_OUT	126		84		37	SEG_B3	
3.3V_IO / SEG_B2_OUT	125		83		38	SEG_B2	
3.3V_IO / SEG_B1_OUT	124		82		39	SEG_B1	
3.3V_10 / SEG_BO_OUT	123	00004 4 40=6 11	81		40	SEG_BO	
3.3V_IO / SEG_A7_OUT	140	SW31-1(SEG_A)	80		41	SEG_A7	
3.3V_IO / SEG_A6_OUT	139	『OFF(open)』で、	79		42	SEG_A6	
3.3V_IO / SEG_A5_OUT	138	Cycloneの信号が 無効			43	SEG_A5	
3.3V_IO / SEG_A4_OUT	137	無効	77		44	SEG_A4	
3.3V_IO / SEG_A3_OUT	136		76		45	SEG_A3	
3.3V_IO / SEG_A2_OUT	135		75		46	SEG_A2	•••••
3.3V_IO / SEG_A1_OUT	134		74		47	SEG_A1	
3.3V_IO / SEG_AO_OUT	133		73		48	SEG_A0	

信号名	IC1(Cyclone) ピン番号	スイッチ	CN1ピン番号	TP群番号	TPピン番号	接続先	電源系
3.3V_IO / SEG_GO_OUT	65	SW31-7(SEG_G)	121		1	SEG_G0	
3.3V_IO / SEG_G1_OUT	66	『OFF(open)』で、	122		2	SEG_G1	
3.3V_IO / SEG_G2_OUT	67	Cycloneの信号が	123		3	SEG_G2	
3.3V_IO / SEG_G3_OUT	68	無効	124		4	SEG_G3	
3.3V_IO / SEG_G4_OUT	73		125		5	SEG_G4	
3.3V_IO / SEG_G5_OUT	74		126		6	SEG_G5	
3.3V_IO / SEG_G6_OUT	75		127		7	SEG_G6	
3.3V_IO / SEG_G7_OUT	76		128		8	SEG_G7	
3.3V_IO / SEG_HO_OUT	57	SW31-8(SEG_H)	129		9	SEG_H0	
3.3V_IO / SEG_H1_OUT	58	『OFF(open)』で、	130		10	SEG_H1	
3.3V_IO / SEG_H2_OUT	59	Cycloneの信号が	131		11	SEG_H2	
3.3V_IO / SEG_H3_OUT	60	無効	132		12	SEG_H3	
3.3V_IO / SEG_H4_OUT	61		133		13	SEG_H4	
3.3V_IO / SEG_H5_OUT	62		134		14	SEG_H5	
3.3V_IO / SEG_H6_OUT	63		135		15	SEG_H6	
3.3V_IO / SEG_H7_OUT	64		136		16	SEG_H7	
3.3V_IO / LEDO_OUT	47	SW30-2(LED)	137		17	LED0	
3.3V_IO / LED1_OUT	48	『OFF(open)』で、	138		18	LED1	
3.3V_IO / LED2_OUT	49	Cycloneの信号が	139	TP5	19	LED2	
3.3V_IO / LED3_OUT	50	無効	140		20	LED3	
3.3V_IO / LED4_OUT	53		141		21	LED4	
3.3V_I0 / LED5_OUT	54		142		22	LED5	
3.3V_IO / LED6_OUT	55		143		23	LED6	
3.3V_IO / LED7_OUT	56		144		24	LED7	
3.3V_10	43		145		25	-	
3.3V_10	44		146		26	-	
3.3V_10	45		147		27	-	
3.3V_10	46		148		28	-	
3.3V_10	80		149		29	-	
3.3V_10	96		150		30	-	
3.3V_10	102		151		31	-	
3.3V_10	81		152		32	-	
3.3V_10	97		153		33	-	

信号名	IC1(Cyclone) ピン番号	スイッチ	CN1ピン番号	TP群番号	TPピン番号	接続先	電源系
3.3V_10	221		2		1	-	
3.3V_IO / RD_OUT_A	194		3		2	COM_A_RD	
3.3V_IO / TD_IN_A	195		4		3	COM_A_TD	
3.3V_IO / DTR_IN_A	196		5		4	COM_A_DTR	
3.3V_IO / DSR_OUT_A	197		6		5	COM_A_DSR	
3.3V_IO / CTS_OUT_A	200		7		6	COM_A_CTS	
3.3V_IO / RTS_IN_A	201		8		7	COM_A_RTS	
3.3V_10	205		9		8	-	
3.3V_10	202		10		9	-	
3.3V_10	203		11		10	-	
3.3V_10	206		12		11	-	
3.3V_10	207		13		12	-	
3.3V_10	208		14		13	-	
3.3V_10	213		15		14	-	
3.3V_I0	187		16		15	-	
3.3V_I0	188		17		16	-	
3.3V_10	193		18		17	-	
3.3V_I0	185		19		18	-	
3.3V_10	186		20		19	-	
3.3V_10	177		21		20	-	
3.3V_I0	178		22		21	-	
3.3V_I0	179		23		22	-	
3.3V_I0	180		24		23	-	
3.3V_10	181		25		24	-	
3.3V_I0	182		26		25	_	
3.3V_I0	183		27	TP6	26	-	
3.3V_I0	184		28		27	_	
3.3V_I0	141		29		28	_	
3.3V_10	156		30		29	_	
3.3V_I0	158		31		30	-	
3.3V_I0	159		32		31	_	
3.3V_I0	160		33		32	_	
3.3V_I0	161		34		33	_	
3.3V_I0	162		35		34	_	
3.3V_I0	163		36		35	_	
3.3V_I0	164		37		36	-	
3.3V_10	165		38		37		
3.3V_I0	166		39		38	-	
3.3V_10	167		40		39	-	
3.3V_I0	168		41		40		
3.3V_10	169		42		41		
3.3V_10	170		43		42		
3.3V_10	173		44		43		
3.3V_I0	174		45		44		
3.3V_10	175		46		45		
3.3V_I0	176		47		46		
3.3V_IO / BZ_OUT	42	SW30-1(BZ) 『OFF(open)』で、 Cycloneの信号が 無効	48		47	BZ	
3.3V_10	199		49		48	-	

信号名	IC1(Cyclone)	スイッチ	CN1ピン番号	TP群番号	TPピン番号	接続先	電源系
	ピン番号						
3.3V_IO / HEX_B3_IN	103		239		1	HEX_B3	
3.3V_IO / HEX_B2_IN	198		238		2	HEX_B2	
3.3V_IO / HEX_B1_IN	204	•••••	237		3	HEX_B1	
3.3V_IO / HEX_BO_IN	220	•••••	236		4	HEX_B0	
3.3V_IO / HEX_A3_IN	217		235		5	HEX_A3	
3.3V_IO / HEX_A2_IN	216	•••••	234		6	HEX_A2	
3.3V_IO / HEX_A1_IN	215		233		7	HEX_A1	
3.3V_IO / HEX_AO_IN	214		232		8	HEX_A0	
3.3V_IO / DIP_B7_IN	239		231		9	DIP_B7	
3.3V_IO / DIP_B6_IN	238		230		10	DIP_B6	
3.3V_IO / DIP_B5_IN	237		229		11	DIP_B5	
3.3V_IO / DIP_B4_IN	236		228		12	DIP_B4	
3.3V_IO / DIP_B3_IN	235		227		13	DIP_B3	
3.3V_IO / DIP_B2_IN	234		226		14	DIP_B2	
3.3V_IO / DIP_B1_IN	233		225		15	DIP_B1	
3.3V_IO / DIP_BO_IN	228		224		16	DIP_B0	
3.3V_IO / DIP_A7_IN	227		223		17	DIP_A7	
3.3V_IO / DIP_A6_IN	226	***************************************	222		18	DIP_A6	
3.3V_IO / DIP_A5_IN	225	***************************************	221		19	DIP_A5	
3.3V_IO / DIP_A4_IN	224		220		20	DIP_A4	
3.3V_IO / DIP_A3_IN	223		219		21	DIP_A3	
3.3V_IO / DIP_A2_IN	222		218		22	DIP_A2	***************************************
3.3V_IO / DIP_A1_IN	219		217	TP1	23	DIP_A1	***************************************
3.3V_IO / DIP_AO_IN	218		216		24	DIP_A0	
3.3V_IO / PSW_D4_IN	41	•••••	215		25	PSW_D4	
3.3V_IO / PSW_D3_IN	23	•••••	214		26	PSW_D3	
3.3V_IO / PSW_D2_IN	21		213		27	PSW_D2	***************************************
3.3V_IO / PSW_D1_IN	20		212		28	PSW_D1	
3.3V_IO / PSW_DO_IN	19		211		29	PSW_D0	
3.3V_IO / PSW_C4_IN 3.3V IO / PSW_C3_IN	18 17		210 209		30 31	PSW_C4	
						PSW_C3	
3.3V_IO / PSW_C2_IN	16	••••••	208		32	PSW_C2	
3.3V_IO / PSW_C1_IN 3.3V_IO / PSW_CO_IN	15 14		207 206		33 34	PSW_C1 PSW_C0	
	17	••••••	205		35	PSW_CU PSW_B4	•••••
3.3V_10 / PSW_B4_IN 3.3V_10 / PSW_B3_IN	13 12		205		35 36	PSW_B3	
3.3V_10 / PSW_B3_1N 3.3V_10 / PSW_B2_IN	11		204		37	PSW_B2	
3.3V_IO / PSW_B1_IN	8		203		38	PSW_B1	
3.3V_IO / PSW_BO_IN	7		201		39	PSW_B0	
3.3V_IO / PSW_A4_IN	6		200		40	PSW_A4	
3.3V_10 / PSW_A3_IN	5	••••••	199		41	PSW_A3	
3.3V_IO / PSW_A2_IN	4	••••••	198		42	PSW_A2	
3.3V_IO / PSW_A1_IN	3		197		43	PSW_A1	
3.3V_IO / PSW_AO_IN	2		196		44	PSW_A0	
3.3V_I0 / PLL2_0UT1n	143		195		45	PLL2_OUT1n	
3.3V_I0 / PLL2_0UT1p	144		194		46	PLL2_0UT1p	
3.3V_I0 / PLL1_0UT0n	39		193		47	PLL1_0UT0n	
3.3V_IO / PLL1_0UT0p	38		192		48	PLL1_0UT0p	
: :: <u></u> :-						' ' '	

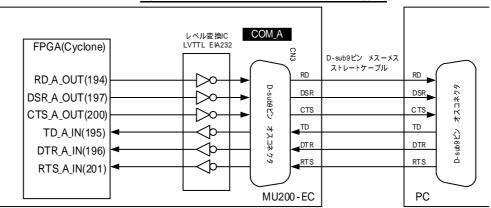
信号名	IC1(Cyclone) ピン番号	スイッチ	CN1ピン番号	TP群番号	TPピン番号	接続先	電源系
-	-	-	1		G	-	GND
-	-	-	50		G	-	GND
-	-	-	51		-	-	
-	-	-	52		G	-	GND
-	-	-	53		-	-	
-	-	-	54		G	-	GND
-	-	-	55		-	-	
-	-	-	56		G	-	GND
-	-	-	57		-	-	
-	-	-	58		G	-	GND
-	-	-	59		-	-	
-	-	-	60		G	-	GND
-	-	-	61		-	-	
-	-	-	62		G	-	GND
-	-	-	63		3V	-	3.3/5V
-	-	-	64		G	-	GND
-	-	-	65		5V	-	5V
-	-	-	66		G	-	GND
-	-	-	67		5V	-	5V
-	-	-	68		G	-	GND
-	-	-	69		5V	-	5V
-	-	-	70		G	-	GND
-	-	-	71		3V	-	3.3V/5V
-	-	-	72	TP2	G	-	GND
-	-	-	169	11.2	G	-	GND
-	-	-	170		3V	-	3.3V/5V
-	-	-	171		G	-	GND
-	-	-	172		5V	-	5∀
-	-	-	173		G	-	GND
-	-	-	174		5V	-	5∀
-	-	-	175		G	-	GND
-	-	-	176		5V	-	5V
-	-	-	177		G	-	GND
-	-	-	178		3V	-	3.3V/5V
-	-	-	179		G	-	GND
-	-	-	180		-	-	
-	-	-	181		G	-	GND
RESETn_IN	240		182		C5	RESET	
-	-	-	183		G	-	GND
3.3V_CK_IN	152		184		C4	CKF4	
-	-	-	185		G	-	GND
3.3V_CK_IN -	153		186		C3	CKF3	
-	-	-	187		G	-	GND
3.3V_CK_IN -	29		188		C2	CKF2	
-	-	-	189		G	-	GND
3.3V_CK_IN	28		190		C1	CLK(IC5)	
-	-	-	191		G	-	GND
-	-	-	240		G	-	GND

2.3.9 EIA232 インタフェース

EIA232 インタフェース用回路を1チャンネル搭載しています。

D-SUB ピンコネクタ(オス) CN3 (COM_A) に FPGA (Cyclone) の I/O ピンがレベル変換 IC を通じて接続されています。

FPGA Cyclone の出力装置として使用できます。


D-SUB 9 ピンコネクタ(オス) CN3 (COM_A) と PC (パソコン) のシリアルポートを D-SUB 9 ピンメス・メスのストレートケーブルで接続すると、最速 115200bps でシリアル通信 することができます。

(1) 構成

図 2.3.9-1 の通り、D-SUB 9 ピンコネクタ(オス) CN3 (COM_A) はレベル変換 IC を 経由して FPGA (Cyclone) と接続しています。

図 2.3.9-1 EIA232 インタフェースの構成

(2) 配線

表 2.3.9-1 D-SUB9 ピンコネクタ(オス)と FPGA Cyclone の配線

D-SUB9 ピン	コネクタ	FPGA Cyclone		
コネクタ	ピン番号	ピン番号	信号名	
	2	194	RD_A_OUT	
CN3	3	195	TD_A _IN	
(COM_A)	4	196	DTR_A _IN	
	5	197	DSR_A _OUT	
	6	200	CTS_A _OUT	
	7	201	RTS_A _IN	

2003年8月 初版発行

2004年1月 第2版発行

2004年2月 第3版発行

2004年4月 第4版発行

2004年5月 第5版発行

2004年11月第6版発行

2005年2月 第7版発行

2005年4月 第8版発行

2005年8月 第9版発行

2005年9月 第10版発行

発行・製作 三菱電機マイコン機器ソフトウエア株式会社

本製品およびマニュアルの全部または一部を無断で複写、複製することはできません。

本製品は、個人として利用するほかは、著作権上、三菱電機マイコン機器ソフトウエア株式会社に無断で使用することはできません。

本製品のうち、外国為替及び外国貿易法に定める規制貨物又は技術に該当するものについては、輸出又は非居住者へ技術を提供する場合、同法に基づく輸出許可・承認又は役務取引許可が必要です。

Power Medusa は開発設計・検証プロトタイプキットで家庭の住宅環境でご使用頂くように設計しておりませんので、ご使用の環境によってはラジオ・テレビ等への電波妨害を引き起こすことがあります。この場合にはお客様にて適切な対策を取って頂きます様お願い致します。

Quartus II 等のツ-ルは供給者が動作保証する環境でご使用ください。

本製品の仕様は、将来予告なく変更することがあります。

FLEX10K、APEX、Cyclone、Stratix、QuartusII、MAX+PLUSII は ALTERA Corporation の登録商標または商標です。FPGA は、XILINX 社の登録商標です。

PowerMedusa は三菱電機マイコン機器ソフトウエア株式会社の登録商標です。

その他、記載されている社名・製品名は各社の商標および登録商標です。

Microsoft、Windows、WindowsNTは、米国マイクロソフトコーポレーションの登録商標です。

製造元

三菱電機マイコン機器ソフトウエア株式会社

〒617-8550 京都府長岡京市馬場図所 1 番地 TEL:075-958-3574 FAX:075-958-3782

E-mail:medusa@kyo.mms.co.jp URL: http://www.mms.co.jp/

MITSUBISHI ELECTRIC MICROCOMPUTER APPLICATION SOFTWARE CO., LTD,

1 BABA-ZUSYO NAGAOKAKYO KYOTO

Zip 617-8550

PHONE: 075-958-3574 FAX: 075-958-3782

E-mail: medusa@kyo.mms.co.jp URL: http://www.mms.co.jp/