Intel
|_D.eveloper

Multi-Threaded I
Programming for Next
Generation Multi-Processing
Techinology

Shihjong Kuo
Strategic Planning/SW Strategy

Intel Corporation

August, 2001

Copyright © 2001 Intel Corporation. Page 1

Intel
|_D.eveloper

Forum ol
Fall 2001

Agenda

e Multi-threading (M) and Hyper-
Threading Technology

e Managing Threads and Resources

e Techniques for Programming MT
Applications

e Examples of Hyper-Threading
Technology performance

Copyright © 2001 Intel Corporation. Page 2

Multi-threading, Multi-Processing, ... I—DOInteII
eveloper

ForumO-J

Multi-threading (MT)

e Sequential tasks
Open File Modify; SpeElll Check

[=4 Wi o
= Wi ook
e Parallel tasksS' open DB’s Address Book

©

e MT applications can .

run on single @

rOCEessOor system ~ .
P y InBox Meeting

Copyright © 2001 Intel Corporation. Page 3

Multi-threading, Multi-Processing, ... [Developer

Multi-Processing s

e Run parallel tasks using multiple processors

Multi-tasking workload + processor resources
=> Improves MT Performance

Copyright © 2001 Intel Corporation. Page 4

Multi-threading, Multi-Processing, ... [Developer

Forume—

Hyper-Threading Technology
e 2 logical processors s | [as

share on-chip

resources
e Increase utilization Processor

of idle resources Execution

_ Resources

e 2 logical processor

I= 2 Physical I

Processors

System Bus

Software sees Hyper-Threading technology as 2
Processors

Copyright © 2001 Intel Corporation. Page 5

Managing Threads, Resources Intel
|_D.eveloper

Design Thread Behavior for ==
Performance and Throughput
e Data vs. Functienal domain

e Compute vs. Memory bound
e Thread Synchronization

Managing Threads, Resources Intel

Workload Characteristics =

e Compute-bound

e Memory-bound

e Data decomposition threading
e Functional domain threading

Uncover parallelism in workload

characteristics

Copyright © 2001 Intel Corporation. Page 7

Managing Threads, Resources Intel
|_D.eveloper

Managing Threads Foryme
e Synchronization:
—Can reduce overall performance
—Spin loops are not free
—|dle threads should give up resources
—Pipeline spin locks

Workload parallelism pays and make thread

synchronization painless

Copyright © 2001 Intel Corporation. Page 8

Technigques for Programming Next Generation MP Technology |T5|mell
eveloper

ForumO-J

General Guidelines to Good
Performance

e Balance computation and memory
operations

Copyright © 2001 Intel Corporation. Page 9

“Pentium, Xeon is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States or other countries.

Technigques for Programming Next Generation MP Technology |_D.Imell
eveloper

ForumoJ

Basic MT Techniques Still
Apply
e Use thread pools

e Don’t use too many: active threads
of ready threads = # of processors

e Use coarse grain vs fine grain threads

e Minimize synchronization
e Don’t ‘False-Share’ cache lines

Copyright © 2001 Intel Corporation. Page 10

Poor Resources Management I—Dolntel

eveloper
. = orume—
Inefficient Data Access Pattern S
#define MAX_ ROWS 8192
#define MAX _ COLS 8192

for (iy = 0; iy < MAX_ROWS; iy++) {
for(jx =0; [x < MAX _COLS ; jx++) {
pDst [MAX_ COLS*(jx +1)-iy—1]=
pSrc [iy* MAX_ROWS + jx | ;
} [/ transpose one byte at a time

J

Copyright © 2001 Intel Corporation. Page 11

Poor Resources Management I—Domtell
eveloper

ForumoJ

Poor Data Access Pattern

8192 8192

SMOY XVIN

Source Array Destination Array

Continual cache misses, excessive bus

transactions

Copyright © 2001 Intel Corporation. Page 12

Do’s on Managing Resources I—DOInteII
eveloper

ForumoJ

Improving Data Access Pattern

MAX_COLS MAX COLS

SMOY XVIN

A JZIS MD071d

BLOCK_SIZE X BLOCK_SIZE X
Source Array Destination Array

Blocking improve cache efficiency,

conserve bus bandwidth

Copyright © 2001 Intel Corporation. Page 13

Partially improved Resources Management I_,lmell
: Developer
Transpose Array w/ Cache Blocking Forume]

Fall 2001

#define MAX_COLS 8192
#define MAX_ROWS 8192
#define YBLOCK_SIZE 32
#define XBLOCK_SIZE 32
for (j=0; j < NUM_YBLOCKS; j++) {
for (k=0; k < NUM_XBLOCKS; k++) {
yblock beg = j*YBLOCK_SIZE;
for (i = yblock _beg ;i <min(YBLOCK_SIZE+ yblock _beg, MAX_ROWS); i++) {
cols_per_block = min(XBLOCK_SIZE, MAX_COLS - k*XBLOCK_SIZE);
offset_src = i*MAX_COLS + k*XBLOCK _SIZE;
offset_dst = k*MAX_COLS*XBLOCK_SIZE -i - 1;
for (x =0; x <cols_per_block; x++) {
yinc += MAX_COLS;
pDst[offset_dst+yinc] = pSrc[offset_src+x];

P

More code, but much faster!

Copyright © 2001 Intel Corporation. Page 14

Poor Thread Synchronization I—Domtel

eveloper
Synchronizing Short Tasks e
Spin-wait loop without PAUSE
spi n_| oop:

cnp 0, sync_var
jne spin | oop

[/ Spin | oop W 0O pause consune nore
[/ hw resources

Exiting this spin-wait loop cost performance

Copyright © 2001 Intel Corporation. Page 15

Programming Technigues I—DOInteII
eveloper

Instructions Eonyne

o HLT

— Only executing logical processor halts
—Increase performance ofi active logical processor

e PAUSE

— Backward-compatible
— Improves performance of spin-wait loops

e CPUID

— Number of logical processors
—Logical processor mapping

Copyright © 2001 Intel Corporation. Page 16

Improved Thread Synchronization I—[)0Intel

evdogs{
Synchronizing Short Tasks i
Spin-wait loop with PAUSE
spi n_| oop:
pause , hint to prevent exit penalty

cnp 0, sync_var
jne spin_| oop

“PAUSE” reduces delays in exiting spin loop

Copyright © 2001 Intel Corporation. Page 17

Poor Thread Synchronization

Don’t Keep Idle Loop Spinning

[D

Intel
eveloper

Forum ol
Fall 2001

[/ Create thread pool and suspend them

for (jj = 0; jj < Numcreated; jj ++) {
ResuneThread(t hread _handl es[jj]);
}

Wiile (all _task done != processor_nask) {
[/
[/

_asm pause

} // spin | oop consunes hw resources

Copyright © 2001 Intel Corporation. Page 18

Num created = create_t hreadpool (num_t hreads) ;

Spin loop is not free

Improved Thread Synchronization I—Domtell
eveloper

Halt Long Idle Thread o

[/ Create thread pool and suspend them
Num created = create_t hreadpool (num_t hreads) ;
for (jj =0; jj < Numcreated; jj ++) {
ResunmeThread(t hread_handl es[j]]);
]
for (jj =0; jj < Numcreated; jj ++) {
[/

ret = WaitForMuiltipl eCbjects(Num event s,
event handl es, FALSE, | NFIN'TE) ;

[/ check return code

}

Thread-blocking API can free up processor

Copyright © 2001 Intel Corporation. Page 19

Poor Resources Management I—DOInteII
eveloper

Forum ol
Fall 2001

Congested Spin Locks

A
V\Aiqui re Lock
Sync_var

Thread
B
Sync var

Acquire Lock \

Thread
C

Excessive contentions create hot locks

Copyright © 2001 Intel Corporation. Page 20

Good Resources Management I—[)0Intell
eveloper

Forume—!
Fall 2001

Pipelining Spin Locks

Data iteml
Thread
B
\Data_itemZ

Thread
C

Pipelined spin locks reduce contentions

Copyright © 2001 Intel Corporation. Page 21

Don’ts on Resources Management |—0Intell
Developer

Forume—!

Falsely-Shared Cache Line

Synchronization without lock

Sync var Balance

Thread A

Order @
\ Thread B
Sync var

Cache
The data “Balance” Is falsely shared

Copyright © 2001 Intel Corporation. Page 22

Do’s on Resources Management

Intel
|_D.eveloper

Prevent Falsely-Shared Cache Line ="

Fill line size 128 Byte

Sync_var

Balance

Order

Cache

Synchronization with hot lock

Thread A

A

cquire Lock
\ Thread B

Sync var

Place sync_var on separate cache line

Copyright © 2001 Intel Corporation.

Page 23

Examples of Hyper-Threading Technology Performance I_D.|me|

Examples

— Inreac
— 1 nreac
— 1 nreac
— I nreac

eveloper

Forum ol
Fall 2001

est speed-up of function threading
est speed-up of data threading
e Coarse-grain-threading kernels

Copyright © 2001 Intel Corporation.

Find maximum/minimum
Averages and Variances
Calculate Spline
Long-latency hazard

Page 24

Examples of Hyper-Threading Technology Performance I_D.|me|

eveloper

Performance Methodology S

e Measure duration of fixed

total work

e Single-threaded execution as baseline

—No threading overhead

e Speed-up of 2 data threads

—Include threading overheac

e Speed-up of 2 functional t
—Include threading overheac

Copyright © 2001 Intel Corporation. Page 25

Areads

Examples of Hyper-Threading Technology Performance I_D.|me||
eveloper

Data-Domain Performance Forume-

80%
70%
60%
50%
40%
30%
A0V
10%

0%

Speedup (%)

MaxMin AvgVar Spline Hazard
Hyper-Threading technology increases data

threading performance

Copyright © 2001 Intel Corporation. Page 26

Examples of Hyper-Threading Technology Performance I_D.|me||
eveloper

Function Domain Performance =~

Two Threads, Different Tasks
75%

Average

MaxMin- Hazard- AvgVar- ‘Hazard- Spline- MaxMin-
AvgVar AvgVar Spline Spline Maxmin Hazard

Hyper-Threading technology increases functional

threading performance

Copyright © 2001 Intel Corporation. Page 27

Intel
|_D.eveloper

Forume—!
Fall 2001

Summary

e Hyper-Threading technology provides 2
logical processor in one physical package

e Workload parallelism pays and make thread
synchronization painless

e Programming techniques to manage
hardware resources are readily available

e Significant speedup of both data threads
and functional threads due to Hyper-
Threading technology

Copyright © 2001 Intel Corporation. Page 28

—e |ntel
Developer

Forumo—J

Call to Action

e Thread your applications take
advantage of Hyper-Threading
technology!

Visit:

http://developer.intel.com/technology/hyperthread

Copyright © 2001 Intel Corporation. Page 29

Intel
|_D.eveloper

Collateral Foryme
e \Web Sites

— http://developer.intel.com/design/pentium4/applnots
— http://developer.intel.com/design/pentium4/manuals

e Documentation and application notes

— |A-32 Intel® Architecture Software Developer’s Manual

— Intel Pentium® 4 and Intel Xeon™ Processor Optimization
Manual

— Intel App Note AP485 - “Intel Processor Identification and
CPU Instructions”

— Intel App Note AP 949 “ Using Spin-Loops on Intel
Pentium 4 Processor and Intel Xeon Processor”

— Intel App Note “Detecting Support for Hyper-Threading
Technology Enabled Processors”

Copyright © 2001 Intel Corporation. Page 30

“Pentium, Xeon is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States or other countries.

Intel
|_D.eveloper

Forume—!

Collateral (Cont’d)

e Multi-processor technology

—“Multiprocessing and Multithreading - Current
Implementations at the Processor Level”, Intel
Corp.

o IDF Courses:

—“Exploiting parallelism Using Intel Compiler”,
Software Tools and Optimization Track, IDF, Fall
2001

—“Multithreaded Programming with OpenMP*”,
Workstation and Technical Computing Track,
IDF, Fall 2001

Copyright © 2001 Intel Corporation. Page 31
*Other names and brands are the property of their respective owners.

Intel
|_D.eveloper

ForumO-J

Collateral (Cont’d)

e Multi-threaded programming

—An Introduction to Programming with Threads,
by Andrew Birrell;
hitp://gatekeeper.dec.com/pun/DEC/SRC/researc
h-reports/abstracts/src-rr-035.html

—Win32 APl decumentation Is available on-line to
MSDN subscribers at
hitp://premium.microseit.com/msdn/library

— hittps//\waww. kal.com

— lllinois-Intel Multithreading Library:
Multithreading Support for Intel Architecture
Based Multiprocessor Systems, Intel Technology
Journal, 1998

Copyright © 2001 Intel Corporation. Page 32

Intel
ITD.eveIoper

Collateral (Cont’d) o

eMulti-threaded programming
Tools

—Intel C++ Compiler :
hitp://developerintel.com/software/produ
cts/compilers/

— KAl C++ Compiler: http:/Avww.kal.com

elntel Developer Service
—http://developer.intel.com/ids

Copyright © 2001 Intel Corporation. Page 33

—e |ntel
Developer

Backup Forym=-

Copyright © 2001 Intel Corporation. Page 34

2 Logical Processors

Intel
ITD.eveIoper

Forum ol
Fall 2001

I= 2 Physical Processors

MP w/ duplicated
resources

Processor Processor
Execution Execution
Resources Resources

A

System Bus

Copyright © 2001 Intel Corporation. Page 35

MP w/ shared
resources

r\ >) r\ >)

APIC API

Processor
Execution
Resources

S E——

System Bus

