
Optimal Pipeline Depth with Pipeline Stage
Unification Adoption

Jun Yao, Hajime Shimada, and Shinji Tomita
Graduate School of Informatics,

Kyoto University, Kyoto 606-8501, Japan
{yaojun,shimada,tomita}@lab3.kuis.kyoto-u.ac.jp

Shinobu Miwa
Graduate School of Law,

Kyoto University, Kyoto 606-8501, Japan
miwa@lab3.kuis.kyoto-u.ac.jp

Abstract—To find the optimal pipeline design point by consid-
ering both performance and power objectives has been one focus
of interest in recent researches. However, we found that previous
papers did not consider deepening or shrinking pipeline depth
dynamically during the program execution. In this paper, with the
adoption of the earlier proposed Pipeline Stage Unification (PSU)
method, we studied the relationship between power/performance
and pipeline depth in processors with a pipeline of multi-usable
depths. Our evaluation results of SPECint2000 benchmarks
shown in this paper illustrate that the PSU adoption can achieve
good efficiency for platforms which concern both energy and
performance, even after the utilization of complex clock gating.

I. INTRODUCTION

In the recent years, increasing the clock frequency has
provided most part of the microprocessor performance im-
provements. With a given technology, the effective way to
increase the frequency is to make deeper pipelines, i.e., to
contain fewer gates in each clock period. M. S. Hrishikesh, et
al.[1] has discussed that the optimal logic depth per pipeline
stage is 6 to 8 fan-out-of-four (FO4) inverter delays for integer
benchmarks from SPEC 2000, in order to achieve the optimum
performance.

As the consideration of power dissipation becomes more
and more important in the modern microprocessor design, a
performance-only objective will be less competitive for proces-
sors in which the thermal dissipation or the battery life is the
dominant problem, such as mobile phones and laptops. Several
researches have been subjected to revealing the relation-
ship between the pipeline depth and the power/performance
metrics[2], [3]. A. Hartstein’s study [3] show that the design
point to obtain optimum Energy-Delay-Delay-Product (EDDP)
occurs at an 8-stage (20 FO4 per each stage) pipeline design
point, averaged over all of the 55 studied workloads.

However, all of the researches above were assuming a fixed
pipeline depth during the program execution. Our studies in
this paper show that the characteristics of individual program
will cause the optimal pipeline depth to occur at quite differ-
ent design points. Thus, using a single fixed pipeline depth
will show efficiencies in certain programs, while inevitably
experiencing some penalties in other programs with different
behaviors. In addition, even for a single program, our results
show that various runtime periods require different optimal
pipeline depths due to the changes in program characteristics
along the whole execution.

There have been some researches on dynamically changing
the pipeline design during the program execution in recent
years. Shimada et al.[4] and Koppanalil et al.[5] have presented
us a method to reduce the processor power consumption via
in-activating and bypassing some of the pipeline registers, and
thus constructing a shallow pipeline for the microprocessor.
This method was called Pipeline Stage Unification (PSU) in
Shimada’s research. Since the application of PSU actually
provides a pipeline with multi-usable depths, we are able to
adapt the pipeline depth to the program characteristics, in order
to achieve better performance or less power consumption.
Therefore, with the adoption of the PSU method, we may
have different findings in the study of optimal pipeline depth,
as compared to paper [3].

In this paper, we are focusing on the study of optimal
pipeline design in PSU enabled platforms which concern both
energy and performance. To study the efficiency of our pro-
posed PSU mechanisms, we used power/performance metrics
such as PDP, EDP, and EDDP, as defined by Gonzalez [6].

Our study of SPEC CPU2000 integer benchmarks demon-
strates that for metric EDP, the average optimal depth for a
fixed-depth pipeline is 12 stages, with 14.2 FO4 per each
pipeline stage. By applying PSU, more EDP reduction is
obtained in the deep pipelines with more than 16 stages.
Among them, the 24-stage PSU enabled pipeline is the most
efficient one in reducing EDP. Compared to the optimal
12-stage pipeline among fixed-depth pipelines, the deep 24-
stage pipeline with ideal PSU enabling can gain 6.5% more
EDP reduction, even after the utilization of complex clock
gating which usually lower the chances of other energy
saving technologies. By considering EDDP, which puts more
emphasis on performance, the 24-stage pipeline design is still
the best design after ideal PSU adoption. Averaged from the
benchmarks we have studied, it achieves 8.29% more EDDP
reduction than the 18-stage pipeline, which is the optimal
design for a fixed-depth pipeline that adopts EDDP as metric.

The rest of the paper is organized as follows. Section II
describes the main proposal of this paper. Simulation method-
ology to evaluate power/performance of different pipeline
depths can be found in Section III. In Section IV we will show
the experiment results, together with some analyses. Section V
concludes the paper.

II. POWER/PERFORMANCE VS. PIPELINE DEPTH

A. Basic power/performance model

Considering a given technology, the clock frequency varies
due to the changes in the pipeline design. It can be calculated
as 1

to+tp/n , where n is the number of pipeline stages, tp serves
for the total logic delay of pipeline, and to represents the latch
overhead per stage. tp and to are usually expressed in the
number of FO4 inverter delays. With the increase of n, data
passes through fewer logic units in one cycle and the clock
frequency becomes progressively larger consequently.

Performance is usually presented as delay. Averagely, the
time consumed by each interval can be calculated as the
product of Cycles Per Instruction (CPI) and the cycle period.
From paper [3], together with our results in Section IV, we
found that the average CPI could be regarded as linear to
the number of pipeline stages, in most of the benchmarks.
Roughly, we can express the CPI in the following equation:

CPI = CPI0 × (1 + γn) (1)

In this equation, CPI0 is the mathematically predicted value
when n is set to zero, and γ is the slope of the CPI

CPI0
vs. n

curve. Both of these two values can be obtained by fitting
the CPI curves from our simulation results. The fitting data
depicts that both CPI0 and γ are positive.

We can then derive the delay of executing a program, as:

D(n) =
NICPI

f
= NICPI0(1 + γn)(to + tp/n) (2)

The parameters are the same as defined in previous formulas
except that NI represents the instruction number in executing
the program.

The power consumed in microprocessors is given by:

P (n) = αCtotalfV 2 =
α(nClatch + Co)V 2

to + tp/n
(3)

This is the dynamic power part of the total processor power,
where α represents the average activity, Ctotal refers to the
total capacity, f denotes the clock frequency, and V serves
as the supply voltage. Since both Ctotal and frequency vary
according to the pipeline design, we can extract the formula a
little further to take the influence of stage number into account.
The latter part of equation (3) is the extracted form. Clatch is
the latch capacity per pipeline stage and Co is the capacity of
other processor units.

Note that this equation is different from the power estima-
tion method in paper [3] in two aspects:

(1) The power equation in paper [3] claims that the majority
power consumption is in pipeline latches. We added other parts
power consumption together, including register files, cache,
and so on. These units have a total capacity represented by
Co in equation (3).

(2) For simplicity, only dynamic power is considered in this
paper, although the pipeline stage unification (PSU) method,
which we used in our research, can also decrease leakage
power by applying the supply voltage gating method on the

disabled pipeline registers. Besides, to reduce the dynamic
power is also the main target of other energy saving technolo-
gies such as Dynamic Voltage Scaling (DVS) method, which
scales down supply voltage when experiencing low workload.

The power/performance metrics, defined in paper [6], have
the form of the following equation:

Metric(m,n) = P (n)×D(n)m (4)

In this equation, m usually takes the value of 1, 2, or 3,
which represents metric PDP, EDP, or EDDP, respectively.
Combining these four equations, we can see that the metric
is actually a function of n. And we can take the derivative of
this metric function with respect to n, to find the theoretical
optimal pipeline depth. It is a mathematically lengthy problem.
Moreover, some parameters like CPI0, γ and α in equation
(1)-(3) are still uncertain, and will vary during the program
execution. For these reasons, we use simulation results in the
study of seeking the optimal number of pipeline stages.

B. Employing PSU, a pipeline with multi-usable depths

As described in paper [2], [3], several researches have
been carried out to find the optimum pipeline depth for
power/performance consideration based on a similar model in
Section II-A. However, although they compared the different
pipeline depths, they were using a predetermined pipeline
depth during a whole execution. And their proposed optimal
depth was averaged among a studied workload set. Under these
assumptions, the differences between different programs or
periods can not be noticed and hence may be eliminated. As
we discuss in Section IV, it is almost impossible to define a
certain optimal depth for all the benchmarks. This inspired us
to launch our study based on a changeable pipeline depth.

For this purpose, we employed the earlier proposed Pipeline
Stage Unification (PSU) mechanism, designed by Shimada [4].
In paper [4], PSU is designed as a method to unify adjacent
pipeline stages via bypassing and in-activating some of the
pipeline registers. Other than its original objective to save
power consumed in the gated pipeline registers, PSU is rather
a pipeline reconfiguration method. As shown in paper [4], a
PSU-enabled pipeline was assumed to have the following three
unification degrees:

(1) Unification Degree 1 (U1): The normal mode without
bypassing any pipeline registers. It has a pipeline with n
stages.

(2) Unification Degree 2 (U2): Merge every pair of adjacent
pipeline stages by in-activating and bypassing the pipeline
register between them. It has a pipeline with n/2 stages.

(3) Unification Degree 4 (U4): Based on U2, merge the
adjacent stages one step further. It has a pipeline with n/4
stages.

According to this proposal, if we start from an n-stage
pipeline, we can choose one suitable pipeline design point
from n, n/2, and n/4 stages. It means that we need to dynam-
ically find the best result from Metric(m,n), Metric(m, n

2),
and Metric(m, n

4) based on the history information, and

use the corresponding unification degree for next bulk of
instructions. Such an online PSU control mechanism has been
detailedly studied in our other research [7]. In the latter part of
this paper, we will demonstrate the relationship between the
power/performance metric and a pipeline with multi-usable
depths by the utilization of a profile based ideal PSU control
mechanism.

III. SIMULATION METHODOLOGY

To study the effect of different pipeline depths on
power/performance, we varied the pipeline depth of a modern
super-scalar architecture similar to current processors, which
have relatively deep pipelines. This section describes the
simulation framework and methodology we utilized to perform
this study.

We used a detailed cycle-accurate out-of-order execution
simulator SimpleScalar tool set [8] to collect the runtime
performance information. We ran 8 integer benchmarks (bzip2,
gcc, gzip, mcf, parser, perlbmk, vortex, and vpr) from SPEC
CPU2000, with train inputs. 1.5 billion instructions were
simulated after skipping the first billion instructions.

A. Wattch tool set

We used Wattch tool set 1.02 [9] to collect the energy
consumption results. In modern processors, α in equation (3)
will vary a lot for different programs during different runtime
periods because of the widely used clock gating. We used
cc3 method in Wattch to provide a complex clock gating
simulation. In this clock gating method, power is scaled
linearly with the port or unit usage, except that unused units
dissipate 10% of their maximum power. The factor 10% exists
because it is impossible to turn off a unit totally when it is
not needed, in the practical circuits.

Since Wattch 1.02 used a fixed traditional 8 stage pipeline,
we modified it to employ deeper pipelines, such as 20 stages.
Furthermore, because of how Wattch provides the dissipated
power, it is not easy to determine the breakdown power
consumed in pipeline latches, since it does not explicitly
have a part related to pipeline registers. Thus we made an
approximate assumption that the power consumed in pipeline
registers is a proportion to the total clock power, and this
proportion varies linearly according to the change of pipeline
depth.

B. Processor parameters

In our simulation, we selected a processor with 20-stage
fixed-depth pipeline, which is similar to the Pentium 4 archi-
tecture, to serve as the baseline processor. Table I shows the
baseline processor configuration.

To define the detailed processor parameters that vary along
with the pipeline depth, we assumed that the latches in pipeline
approximately consume 30% of the total processor power
in the 20-stage pipeline. This value is same with paper [4].
From this assumption, we can get the latch capacity for each
stage (Clatch) to be about 1.5% of total capacity, with Co

providing the left 70% of total capacity. tp and to are set

TABLE I
PROCESSOR CONFIGURATION

Processor 4-way out-of-order issue,
128-entry RUU, 64-entry LSQ,
4 int ALU, 2 int mult/div,
4 fp ALU, 2 fp mult/div,
4 memory ports

Branch Prediction 32K-entry gshare, 13-bit history,
4K-entry BTB,32-entry RAS

L1 Icache 64KB/32B line/2way
L1 Dcache 64KB/32B line/2way

L2 unified cache 2MB/64B line/4-way
Memory 64 cycles first hit,

2 cycles burst interval
TLB 32-entry I-TLB,

64-entry D-TLB,
128 cycles miss latency

TABLE II
SOME DETAILED PROCESSOR PARAMETERS

n to + tp/n Freq. IL1 DL1 L2 ALU MP.
4 37.5 0.5067 1 1 4 1 4
8 20 0.95 2 2 7 2 8
12 14.2 1.3412 2 2 10 2 12
16 11.3 1.6889 3 3 13 3 16
20 9.5 2.0 4 4 16 3 20
24 8.33 2.28 4 4 20 4 24
28 7.5 2.533 5 5 23 4 28
32 6.88 2.7636 5 5 26 5 32
36 6.34 2.9739 6 6 29 5 36
40 6 3.1667 7 7 32 6 40

to be 140 FO4 and 2.5 FO4 respectively, as described in
paper [3]. Assume that the baseline 20-stage pipeline has a
clock frequency of 2GHz, the frequencies of other pipelines
with different stages can be calculated as:

f(n) =
to + tp/20
to + tp/n

× 2GHz (5)

We used Cacti 3.0 tool set [10] to calculate the cache latency
of the baseline processor configuration. For example, the L1
data cache of 90nm technology in the baseline processor
will have a 21.14-FO4 access latency. Divided by the logic
depth (latch overhead excluded), we can get the corresponding
access latency in cycles. Similarly, this calculation also applies
to the L2 cache latency. In this way, we derived latencies used
in the simulation.

Branch misprediction resolution latency is defined as the
time when the actual outcome of the branch is known. This
value also varies for different designs. However, researches in
paper [1], [11], [12] illustrate that this latency play a minor
role in the final Instructions Per Cycle (IPC). In our simulation,
we roughly assume that it changes linearly to the number of
pipeline stages.

We assumed and evaluated different pipeline depths, from
4 to 40 stages. Introducing all of them is too redundant so
that we only show some of the configurations in table II. The
notations in table II list as follows:
• n: number of pipeline stages;

• to + tp/n: FO4 inverter delay per stage (in FO4);
• Freq.: Clock frequency (in GHz);
• IL1, DL1, L2: latency of L1 instruction, L1 data, and L2

cache (in cycles);
• ALU: integer ALU latency (in cycles);
• MP.: latency through the branch resolution path (in cy-

cles).
In our simulation, integer ALU latency in table II applies

only for the calculation of dependent effective address. We
assumed that the processor can issue other dependent integer
executions in every cycle by using an aggressive bypassing
network.

Other parameters, such as integer MULT and floating point
ALU/MULT, make relatively small influences to IPC with the
changes of pipeline depth, according to paper [12].

IV. RESULTS AND ANALYSES

In this section, we will study the relationship between
power/performance metrics and pipeline depth, for pipelines
with either a predetermined depth or multi-usable depths, by
the help of simulation results.

A. Energy-only or Performance-only Consideration

If we set m in equation (4) to be 1, it represents the
PDP metric, which is actually an energy-only metric. Roughly
assuming a processor without clock gating, in which α of the
P (n) equation (3) remains to be a constant, we can get a
degraded version of equation (4). After simplification, it takes
the form of:

Metric(1, n) = A2n
2 + A1n + A0 (6)

All the coefficients in this equation are positive. Therefore,
we can get the mathematical conclusion that the smallest
PDP is always achieved in a one-stage pipeline without clock
gating application. Dashed lines in figure 1 depict the results
we obtained from SPEC CPU2000 integer benchmarks. Each
PDP (n) in this figure is normalized by PDP (20) of the
corresponding benchmark. “PDP (20)”-like notation stands
for the PDP result of the processor with a fixed-depth pipeline
of 20 stages. Similar notations are used in the latter parts of
this paper. For simplicity, only 4 from those 8 benchmarks are
listed. It shows that even with the application of sophisticated
clock gating, the conclusion that shallow pipelines consume
less energy is still applicable. Therefore, if PDP is used as
the power/performance metric, there is no need to apply PSU
mechanisms, since a 4-stage pipeline always achieves the best
efficiency in our tests.

Another utmost situation occurs when we set m in
Metric(m, n) to be ∞. It eliminates the influence of power,
and thus is a performance-only metric.

Solid lines in figure 1 demonstrate the delay results we
got from SPECint2000 benchmarks. It shows a quite different
trend than the energy-only metric. Delay shrinks dramatically
from 4 to 20 stages design point, while keeps plain among
deep pipelines which have more than 20 stages. Since the best

vortex.delay

 80%

 100%

 120%

 140%

 160%

 180%

 200%

 5 10 15 20 25 30 35 40

N
or

m
al

iz
ed

 P
D

P
an

d
D

el
ay

Number of Pipeline Stages

bzip2.pdp
gcc.pdp

perlbmk.pdp
vortex.pdp

bzip2.delay
gcc.delay

perlbmk.delay

 60%

Fig. 1. Normalized PDP and Delay of fixed-depth pipelines

average

 80%

 100%

 120%

 140%

 160%

 180%

 200%

 220%

 240%

 5 10 15 20 25 30 35 40

N
or

m
al

iz
ed

 E
D

P

Number of Pipeline Stages

bzip2
gcc

perlbmk
vortex

 60%

Fig. 2. Normalized EDP of fixed-depth pipelines

performance concentrates at the deep pipeline area, we can
gain little achievement by applying a pipeline of changeable
depths. Therefore, the efficiency of PSU will also be limited
in platforms which focus on performance most.

B. EDP results

As either energy or performance only targeting seems
less competitive in modern microprocessor designs, from this
section, we will put emphasis on the metrics that combine both
energy and performance considerations together.

1) Results of fixed pipeline depth: In this subsection, we
follow the research work done in paper [2], [3] under our
deployed environments. It is also the precedent work for the
evaluations of PSU enabled pipelines.

Figure 2 shows the EDP results of pipelines with fixed
depths, from 4 stages to 40 stages. The x-axis denotes the
number of pipeline stages and the y-axis denotes the nor-
malized EDP results. For each benchmark, all of the EDP
results “EDP (n)” are normalized by the baseline 20-stage
pipeline result “EDP (20)” of the same benchmark. Hence,
these curves are connected at the 20-stage point.

In this figure, the solid line represents the average values
of all 8 SPECint2000 benchmarks and the dashed lines are

the EDPs of individual benchmark. For simplicity, we only
list the results of bzip2, gcc, perlbmk, and vortex here. Other
benchmarks like gzip, mcf, parser, and vpr show similar shapes
to the benchmarks drawn in figure 2.

Figure 2 depicts that optimal EDP result occurs at the 12-
stage pipeline design point, averaged from all the 8 integer
benchmarks. At this point, each pipeline stage will have a
14.2 FO4 inverter delay, including 2.5 FO4 latch overhead.
The 12-stage pipeline can achieve an EDP reduction of 9.70%,
compared to the baseline 20-stage design, averagely for the 8
integer benchmarks.

Besides the optimal depth finding, figure 2 also shows that
individual benchmark demonstrates various behaviors at the
same design point. As shown in figure 2, for benchmark gcc
and perlbmk, the optimal EDP can be obtained by a 12-stage
pipeline, which is the same as the average line gives. For the
benchmark bzip2, the pipeline with 18 stages has the smallest
EDP result. It is a deeper pipeline with a 10.3 FO4 delay
per each stage. And for benchmark vortex, the optimal design
point occurs at even deeper pipeline design point with 24
stages and 8.33 FO4 per each stage. The other SPECint2000
benchmarks gzip, mcf, parser, and vpr demonstrate a similar
behavior like the average data. Therefore, using 12-stage
design to be the optimal value means that we must experience
less EDP reduction in programs that have similar behaviors
like bzip2 and vortex.

2) Results of ideal PSU method: In Section IV-B1, we stud-
ied the optimum pipeline design point among several fixed-
depth pipelines by considering EDP metric. In this subsection,
we will pursue our research on pipelines with PSU utilization.

According to the proposal of PSU, an n-stage pipeline
(at U1 mode) can be dynamically changed to an n/2-stage
pipeline under U2 mode, or to an n/4-stage pipeline unde U4
mode during the program execution, as we have described in
Section II-B. As shown in paper [7], program may experience
different phases during the whole execution. If PSU selects
suitable unification degree for each phase, it can achieve better
efficiency in reducing EDP than the fixed length pipelines.

To simplify our studies and focus on the influence intro-
duced by the pipeline design point only, in this paper, we
chose the ideal PSU adoption method described in paper [7].
Suppose that we apply this method on a 20-stage PSU enabled
pipeline. Firstly, we divided program into fixed length intervals
(in simulation, 10k instructions per each interval). Then we ran
the program for three times, in the fixed 20-stage mode, the
fixed 10-stage mode, and the fixed 5-stage mode, similarly as
we did in Section IV-B1. And we recorded the EDP of each
interval during the execution. After the three executions, we
collected the EDP data of each interval of all U1, U2, and
U4 mode for the 20-stage pipeline. Thus, in the ideal PSU
adoption mode, we could set the best unification degree at the
beginning of an interval based on the profiling data. Although
this method can not be achieved practically, it is useful to
study the direct impact of different pipeline designs in PSU
enabled processors.

Figure 3 shows the EDP results of processors with ideal

perlbmk

gcc

Avg.

bzip2

votex

 70%

 100%

 105%

 110%

40/20/1036/18/932/16/828/14/724/12/620/10/516/8/4

N
or

m
al

iz
ed

 E
D

P

Stage Number of PSU enabled Pipeline (U1/U2/U4)

 90%

 85%

 80%

 75%

 95%

Fig. 3. Normalized EDP of ideal PSU-enabled pipelines

PSU adoption. Its x-axis denotes the different PSU-enabled
pipeline configuration, from 16-stage to 40-stage. The notation
like “20/10/5” represents a PSU-enabled pipeline with 20
stages in U1, 10 stages in U2, and 5 stages in U4 mode. The
y-axis denotes the normalized EDP results. The “Avg.” line is
the mean EDP result from all the 8 SPECint2000 benchmarks.
4 dashed lines of individual benchmark are also listed to show
the influences by different program characteristics. The EDP
results “EDP (n/n

2 /n
4)” of each benchmark are normalized

by the 20-stage fixed-depth result “EDP (20)” of the same
benchmark.

From figure 3 we can see that the optimal pipeline depth
occurs at a 24-stage pipeline design point after ideal PSU
adoption, averaged from 8 benchmarks. At this design point,
each pipeline stage has a depth of 8.3 FO4 inverter delay,
including 2.5 FO4 latch overhead. Furthermore, this design
point is also effective for the individual benchmark consider-
ation, i.e., most of the 8 benchmarks experience the smallest
EDP under the 24/12/6 pipeline configuration with ideal PSU
adoption.

The only deviation occurs in benchmark bzip2, where
the 40/20/10-stage design is the best one. However,
EDP (24/12/6) of bzip2 is only about 1% larger than
EDP (40/20/10). This observation indicates that the PSU
enabled pipeline can greatly alleviate the influence introduced
by the program behavior. And a certain design point with well-
designed dynamic PSU adoption may be able to fit for a large
range of programs.

Another observation from figure 3 is that the deviations
between different pipeline configurations are not large. For
most of the benchmarks, the deviations are within 10% from
the 16/8/4-stage pipeline to the 40/20/10-stage pipeline. By
applying PSU dynamically, the processor can avoid “too bad
pipeline configuration” efficiently so that the worst EDP in
figure 3 is far better than that of figure 2.

Moreover, figure 3 indicates that after applying PSU, we
can obtain more EDP reduction, compared to the best fixed
pipeline depth in figure 2. In figure 2, the optimal depth
occurs at a 12-stage pipeline, considering all benchmarks

average

 100%

 120%

 140%

 160%

 180%

 200%

 220%

 240%

 5 10 15 20 25 30 35 40

N
or

m
al

iz
ed

 E
D

D
P

Number of Pipeline Stages

bzip2
gcc

perlbmk
vortex

 80%

Fig. 4. Normalized EDDP of fixed-depth pipelines

averagely. Its EDP result is 90.3% of the baseline 20-stage
pipeline one, while the EDP of 24/12/6-stage PSU enabled
pipeline in figure 3 is 84.5% of the baseline 20-stage pipeline’s
EDP. This PSU-enabled pipeline saves 6.5% more EDP, com-
pared to the fixed-depth 12-stage pipeline value. Individu-
ally, for gcc, the 24/12/6 stage achieves about 5.78% more
EDP reduction than the fixed-depth 12-stage design point.
This additional reduction is obtained by executing 37.5%
instructions in the 24-stage, 50.9% instructions in the 12-
stage, and 11.6% instructions in the 6-stage pipeline. Such an
observation indicates that even for a single program execution,
different periods will require different pipeline configuration
to achieve the best power/performance result. By using PSU,
dynamically predicting and adopting the best pipeline depth
is necessary and may probably show better efficiency in the
modern processors, if frequency goes higher.

Usually the complex clock gating in Wattch will leave little
space for other energy saving technologies. For comparison,
we also did a series of experiments in which a fully switched
processor is assumed. The EDP reduction by ideal PSU is
about 28.5%, compared to EDP (20) in processors without
clock gating. Although the energy saving by PSU method is
not so large after the utilization of clock gating, the chance is
not completely eliminated and we can still gain 15.5% EDP
reduction. For consistency, we continue to use results with
clock gating in the latter parts to analyze the EDP or EDDP
savings for pipelines with ideal PSU adoption.

C. EDDP results

In this section, we will study the EDDP results after using
Wattch to provide a complex clock gating. We did the same
two series of evaluations, one for fixed-depth pipeline during
a program execution (figure 4), the other for pipelines with
ideal PSU utilization (figure 5). The notations, x-axis, and y-
axis are similar to the ones in figure 2 and 3, except that these
two figures are using EDDP to serve as the power/performance
metric.

Figure 4 demonstrates that with more considerations on the
performance by metric EDDP, the optimal pipeline depth of

Avg.

 80%

 85%

 90%

 95%

 100%

 105%

 110%

 115%

 120%

40/20/1036/18/932/16/828/14/724/12/620/10/516/8/4

N
or

m
al

iz
ed

 E
D

D
P

Stage Number of PSU enabled Pipeline (U1/U2/U4)

bzip2
gcc

perlbmk
vortex

 75%

Fig. 5. Normalized EDDP of ideal PSU-enabled pipelines

TABLE III
nopt FOR BENCHMARKS (EDDP)

nopt benchmarks
12 gcc, gzip, mcf, parser, perlbmk, vpr
18 bzip2, mcf, parser
28 vortex

a fixed pipeline now occurs at the 18-stage pipeline design
point, averaged from the 8 integer benchmarks. Individually,
the optimal fixed depths for these benchmarks are shown in
table III. Still, the averagely optimal fixed 18-stage pipeline
does not fit for all 8 benchmarks.

Figure 5 is the results after applying ideal PSU. We can
draw similar conclusions from this figure as we did with
figure 3. After the ideal PSU adoption, the averaged optimal
design point is still the 24/12/6-stage pipeline configuration.
At this design point, we can achieve 11.9% EDDP saving,
compared to EDDP (20) of the baseline fixed-depth pipeline.
Compared to the 18-stage pipeline which is the optimal design
for a fixed-depth pipeline, the 24/12/6-stage pipeline achieves
8.29% more EDDP reduction, averaged from 8 benchmarks.
This indicates that the PSU utilization will have efficiency in
reducing the processor EDDP, even with a complex clocking
gating application.

D. Considering voltage scaling

Dynamic Voltage Scaling (DVS) is a commonly used
method in energy saving fields. However, as we studied
the original DVS model, we found that in the recent chip
technologies, it can hardly help the reduction in EDP or
EDDP despite of its great saving in PDP. Simply considering
a processor with one power-supply network, we can assume
that the performance degrades linearly, as voltage scales down.
For a bulk of instructions that is selected to execute in lowered
voltage, we can approximately have:

MetricDV S(m)
Metricnormal(m)

=
(

Vlow

Vdd

)2 (
f

flow

)m−1

(7)

Detailedly, if we are considering a processor like 90nm

Pentium M [13], we can assume the following parameters for
equation (7): Vdd = 1.34V , f = 2GHz and Vlow = 1.1V ,
flow = 1GHz.

When m = 1, PDPDV S

PDPnormal
= 0.6738. It indicates that DVS

can efficiently reduce the PDP.
However, when m = 2, EDPDV S

EDPnormal
= 1.347. It shows

that DVS will experience some penalties when considering
EDP metric. Similar degradations also exist when choosing
metric EDDP. DVS suffers from the penalty in the delay as
m becomes larger.

Moreover, there are many restrictions of voltage scaling in
the current and the future process technologies (e.g. soft error,
process deviation). The ineffectiveness of DVS in metric EDP
and EDDP will probably become even larger in the future
process technology.

Since DVS has good PDP result, we believe that it will
have the best outputs if there is a deadline existing for
the bulk of instructions. Under such circumstance, voltage
can be lowered until successfully meeting the throughput
restriction. A. Hyodo [14] has detailedly studied energy saving
schemes by varying both supply voltage and pipeline depth in
platforms where target throughput plays the dominant role.
Yet it is different from the scope of this paper as we focus on
the relationship between the best power/performance metric
results and processor designs.

Recently, some researchers begin to consider hiding the
DVS performance degradation under the L2 cache misses [15]
with the help of multiple power-supply networks. Here, the
L2 cache miss can be regarded as a special deadline for
an instruction interval. However, the L2 cache misses re-
lated schemes will have some limitations: it shows the best
efficiencies in memory intensive benchmarks and has small
outcomes for other benchmarks. Even for memory intensive
benchmarks, such outcomes will be limited by clock gating
and data prefetching technologies.

For the purpose of considering both energy and perfor-
mance, we do not apply voltage scaling on processors in this
paper. And our results show that PSU enabled processors can
still get achievements in EDP and EDDP in most benchmarks,
even with the application of complex clock gating.

V. CONCLUSIONS

In this paper, we have studied relationship between
power/performance metric and pipeline depth for pipelines
with fixed depth and ideal PSU utilization. Our results show
that averagely, the optimal depth will be 12 stages for a
fixed-depth pipeline if we consider metric EDP. But the
optimal pipeline depth differs for individual programs and
runtime periods, and the difference is hardly negligible. By
applying ideal PSU method, we find that more EDP and EDDP
reduction can be achieved by deeper pipeline design. The EDP
differences are with 10% between the deep pipelines, after
PSU utilization. Among them, a 24/12/6 pipeline design can
obtain the smallest EDP. It saves 15.5% EDP, compared to
the baseline 20-stage pipeline with clock gating utilization.
Furthermore, such an EDP result is 6.5% smaller than the

fixed 12-stage pipeline, which is the optimal one for a fixed-
depth pipeline design. Similar conclusions can be obtained
when considering power/performance metric EDDP.

ACKNOWLEDGMENT

This research was partially supported by Grant-in-Aid for
Fundamental Scientific Research (S) #16100001 from Ministry
of Education, Culture, Sports, Science and Technology Japan.

REFERENCES

[1] M. Hrishikesh, K. Farkas, N. Jouppi, D. Burger, S. Keckler, and
P. Sivakumar, The Optimal Logic Depth Per Pipeline Stage is 6 to 8
FO4 Inverter Delays, Proceedings of the 29th International Symposium
on Computer Architecture (ISCA 29), pp. 14–24, 2002.

[2] V. Srinivasan, D. Brooks, M. Gschwind, P. Bose, V. Zyuban, P. N. Stren-
ski, and P. G. E. Sylvester, Optimizing Pipelines for Power and
Performance, Proceedings of the 35th International Symposium on
Microarchitecture (MICRO 35), pp. 333–344, 2002.

[3] A. Hartstein and T. R. Puzak. Optimum Power/Performance Pipeline
Depth, Proceedings of the 36th International Symposium on Microar-
chitecture (MICRO 36), pp. 117–128, 2003.

[4] H. Shimada, H. Ando, and T. Shimada, Pipeline Stage Unification:
A Low-Energy Consumption Technique for Future Mobile Processors,
Proceedings of the 2003 International Symposium on Low Power
Electronics and Design (ISLPED 2003), pp. 326–329, 2003.

[5] J. Koppanalil, P. Ramrakhyani, S. Desai, A. Vaidyanathan, and North
E. Rotenberg, A Case for Dynamic Pipeline Scaling, Proceedings of the
2002 international conference on Compilers, architecture, and synthesis
for embedded systems CASES 2002), pp. 1–8, 2002.

[6] R. Gonzalez and M. Horowitz, Energy dissipation in general purpose
microprocessors, IEEE Journal of Solid-State Circuits (IEEE JSSC),
Vol. 31, No. 9, pp. 1277–1284, 1996.

[7] J. Yao, H. Shimada, Y. Nakashima, S. Mori, and S. Tomita, Program
Phase Detection Based Dynamic Control Mechanisms for Pipeline Stage
Unification Adoption, Workshop on ALPS 2006, pp. 39–46, 2006.

[8] D. C. Burger, and T. M. Austin, The SimpleScalar Tool Set, version 2.0,
Technical Report CS-TR-97-1342, Department of Computer Science,
University of Wisconsin-Madison, 1997.

[9] D. Brooks, V. Tiwari, and M. Martonosi, Wattch: A framework for
architectural-level power analysis and optimization, Proceedings of the
27th International Symposium on Computer Architecture (ISCA 27), pp.
83–94, 2000.

[10] P. Shivakumar and N. P. Jouppi. CACT 3.0: An Integrated Cache Timing,
Power and Area Model, Technical report, WRL Research Report, 2001.

[11] A. Jagannathan, H. Honghua Yang, K. Konigsfeld, D. Milliron, M. Mo-
han, M. Romesis, G. Reinman, J. Cong, Microarchitecture evaluation
with floorplanning and interconnect pipelining, Proceedings of the
2005 Asia and South Pacific Design Automation Conference (ASP-
DAC 2005), pp. 8–15, 2005.

[12] H. Shimada, H. Ando, and T. Shimada, Reducing Processor Energy
Consumption with Pipeline Stage Unification (in Japanese), IPSJ Trans-
actions on Advanced Computing System, Vol. 45, No. SIG 1(ACS 4),
pp. 18-30, (2004).

[13] Intel Corporation, Intel Pentium M Processor on 90nm Process with
2MB L2 Cache Datasheet, 2006.

[14] A. Hyodo, M. Muroyama, H. Yasuura, Variable Pipeline Depth Proces-
sor for Energy Efficient Systems, IEICE TRANSACTIONS on Funda-
mentals of Electronics, Communications and Computer, Vol. 86, No. 12,
pp. 2983–2990, 2003.

[15] Li Hai, Cher Chen-Yong, K. Roy, and T. N. Vijaykumar, Combined
Circuit and Architectural Level Variable Supply-Voltage Scaling for Low
Power, IEEE Transactions on VLSI systems, Vol. 13, No. 5, pp. 564–
576, 2005.

