
An EDP study on the Optimal Pipeline Depth

for Pipeline Stage Unification Adoption

Jun Yao,† Hajime Shimada,† Yasuhiko Nakashima,††

Shin-ichro Mori††† and Shinji Tomita†

In a given technology, increasing clock frequency can be achieved by properly deepening
the pipeline depth, in order to obtain the optimum performance. However, from the study of
the SPECint2000 benchmarks, when considering power dissipation in processors together, we
find that the optimum EDP will occur in a 12-stage pipeline, with approximately 14 fan-out-
of-four (FO4) inverter delays for each stage. With the adoption of the previously proposed
Pipeline Stage Unification method, the optimal Energy Delay Product (EDP) can be easily
achieved in modern processors with higher frequency and deeper pipeline depth. Moreover,
more EDP reduction can be obtained in processors with proper PSU adoption, compared with
fixed length pipelines.

1. Introduction

In the recent years, increasing the clock frequency
has provided most part of the microprocessor perfor-
mance improvements. With a given technology, the
effective way to increase the frequency is to make
deeper pipelines, i.e., to experience fewer gates in
each clock period. M. S. Hrishikesh, et al.1) has
discussed that the optimal logic depth per pipeline
stage is 6 to 8 fan-out-of-four (FO4) inverter delay
for integer benchmarks from SPEC 2000, in order
to achieve the optimum performance.

As the consideration of power dissipation becomes
more and more important in modern microproces-
sor design, a performance-only objective will be
less competitive for processors in which the ther-
mal dissipation or the battery life is the dominant
problem, such as the mobile phones and laptops.
Several researches have been subjected to reveal-
ing the relationship between the pipeline depth and
the power/performance metrics2),3). A. Hartstein’s
study3) show that the design point to obtain opti-
mum Energy-Delay-Delay-Product (EDDP) occurs
at an 8-stage (20 FO4 per each stage) pipeline de-
sign point, averaged over all of the 55 workloads he
studied. In that paper, he also proposed a theoreti-
cal method to find the trade-off between power and
performance.

However, all of the above studies were assuming
a fixed pipeline depth during the program execu-
tion. Our studies in this paper show that the char-
acteristics of individual program will cause the opti-
mal pipeline depth to occur at quite different design
points. Thus, using a single fixed pipeline depth will
show efficiency in certain programs while inevitably
experiencing some penalty in other programs with
different behaviors.

There are some studies on dynamically changing
the pipeline design during the program execution in

† Graduate School of Informatics, Kyoto University
†† Graduate School of Information Science, Nara Institute

of Science and Technology
††† Graduate School of Engineering, Fukui University

recent years. Shimada et al.4),11),12) and Koppanalil
et al.5) have presented us a method to reduce the
processor power consumption via in-activating and
bypassing some of the pipeline registers and using
a shallow pipeline during the program execution,
which is called pipeline stage unification (PSU). Af-
ter bypassing some of the pipeline registers, the
pipeline has fewer stages. According to this charac-
teristics, PSU can be regarded as a dynamic method
to change pipeline depth during runtime.

Our research described in this paper is focusing
on revealing the relationship between the pipeline
depth to both the processor power consumption and
the performance with PSU adoption. We used the
Energy-Delay-Product (EDP) defined by Gonzalez6)

to serve as the power/performance metric because
it can mostly fit for our target platforms which in-
cludes light-weighted workstations and laptops.

From our study of SPECint2000 benchmarks, we
found that the average optimal depth for a fixed
depth pipeline is 12 stages, with 14.2 FO4 per each
pipeline stage. With the PSU utilization, an n-stage
pipeline can change to an n/2-stage and n/4-stage
pipeline dynamically. We can achieve more EPD
decreases in PSU enabled deep pipelines with more
than 16 stages. Among them, we found that the 24-
stage pipeline is the most efficient one in reducing
EDP. Compared with the optimal 12-stage depth
among fixed depth pipelines, our results show that
the deep 24-stage pipeline with PSU enabling can
achieve about 7% more EDP reduction, averaged
from 8 SPECint2000 benchmarks.

The rest of the paper is organized as follows. Sec-
tion 2 describes the main idea of this paper. Sim-
ulation methodology to evaluate EDP of different
pipeline depths can be found in Section 3. In Sec-
tion 4 we show the experiment results, together with
some analysis. Section 5 concludes the paper.

2. EDP vs. Pipeline Depth

2.1 Basic Processor EDP model
Considering a given technology, the clocking fre-

quency varies due to the changes in the pipeline de-

1

sign. Such a relationship can be expressed as fol-
lows:

f =
1

to + tp/n
(1)

It gives that the frequency (f) is a function of
these parameters: the number of pipeline stages (n),
the total logic delay of pipeline (tp), and the latch
overhead per pipeline stage (to). tp and to are usu-
ally expressed in the number of FO4 inverter delays.
From euqation (1), we can see that with the increase
of n, data passes through fewer logic units in one cy-
cle and the clock frequency increases consequently.

Performance is usually presented as delay per in-
struction. It is quite sensitive to the frequency, as
shown in the following formula.

D(n) =
Nc

f ×NI
=

Nc × (to + tp/n)
NI

(2)

The parameters are the same with equation (1)
except that Nc represents the number of cycles re-
quired in executing the bulk of NI instructions.

Power can be expressed as follows:

P (n) = ACtotalfV 2 =
A(nClatch + Co)V 2

to + tp/n
(3)

This is the dynamic power part of the total pro-
cessor power, where A represents the average activ-
ity, Ctotal refers to the total capacity, f denotes the
clock frequency, and V serves as the supply voltage.
Since both Ctotal and frequency vary due to pipeline
design, we can extract the formula a little further to
take the influence of stage number into account, as
we did in latter part of equation (3). Clatch is the
latch capacity per pipeline stage, Co is the capacity
of other processor units.

Note that this equation is different from the pre-
vious power estimation in paper3) in two aspects:
(1) The power equation in paper3) claims that the
majority power consumption is in pipeline latches.
We added other parts power consumption together,
including register files, cache, and so on. These units
have a total capacity represented by Co in equa-
tion (3).
(2) For simplicity, only dynamic power is consid-
ered in this paper. Although leakage power changes
due to the number of latches, the changes are slower
than the dynamic power because both the frequency
and the number of latches affect the dynamic power.

Energy-Delay-Product (EDP) can be expressed as
follows:

EDP (n) = P (n)×D(n)×D(n) (4)
To find the optimal depth, we need to take the

derivative of this EDP equation with respect to n.
It is a mathematically lengthy problem. Moreover,
some parameters like Nc and A in equation (2, 3)
are still uncertain, and will vary during the program
execution. For these reasons, we use simulation re-
sults to find the optimal number of stages (n) in this
paper.

2.2 Employing PSU: a changeable pipeline
depth

As described in paper2),3), several researches have
been carried out to find the optimum pipeline depth

for power/performance consideration with a simi-
lar model in Section 2.1. However, although they
compared the energy metrics of different pipeline
depths, they were using a fixed pipeline depth dur-
ing a whole execution. This means that they elimi-
nated the differences between different program pe-
riods. And their proposed optimal depth was aver-
aged among a studied workload set. As discussed in
Section 4, we found it almost impossible to define a
certain optimal depth for all the benchmarks. This
inspired us to launch our study based on a change-
able pipeline depth.

We found that the design of Shimada et al.4)
could fit for this purpose. In his paper, Shimada
proposed an energy consumption reduction method
called Pipeline Stage Unification (PSU) to reduce
the power consumption in mobile processors. Other
than its original purpose to reduce power consump-
tion by bypassing the pipeline registers, PSU is
rather a pipeline reconfiguration method, as figure
1 shows. Three unification degrees were assumed in
his paper, and we followed such design in our study,
as follows:
(1) Unification Degree 1 (U1): The normal mode
without bypassing any pipeline registers. It has a
pipeline of n stages.
(2) Unification Degree 2 (U2): Merge every pair
of adjacent pipeline stages by in-activating and by-
passing the pipeline register between them. It has a
pipeline of n/2 stages.
(3) Unification Degree 3 (U4): Based on U2,
merge the adjacent stages one step further. It has a
pipeline of n/4 stages.

According to the PSU proposal, if we start from
an n-stage pipeline, we can choose one suitable
pipeline design point from n, n/2, and n/4 stages.
As we are using EDP to be the power/performance
metric, we need to find a best one from EDP (n),
EDP (n

2), and EDP (n
4) based on the history infor-

mation, and use the corresponding unification de-
gree for next bulk of instructions, which is shown in
our previous research7). In the latter part of this pa-
per, we will show the relationship between the EDP
and a pipeline with multi-useable depths.

3. Simulation Methodology

To study the effect of different pipeline depths on
power/performance, we varied the pipeline depth of
a modern superscalar architecture similar to cur-
rent processors, which have relatively deep pipelines.
This section describes our simulation framework and
the methodology we used to perform this study.

We used a detailed cycle-accurate out-of-order ex-
ecution simulator, SimpleScalar Tool Set8), to col-
lect the runtime performance information. We used
8 integer benchmarks (bzip2, gcc, gzip, mcf, parser,
perlbmk, vortex, and vpr) from SPEC2000, with
train inputs. 1.5 billion instructions are simulated
after skipping the first billion instructions.

3.1 EDP Estimation Methods
Based on this simulator, we have used two ways

2

to estimate the runtime power dissipation and the
EDP in processors:

(1) Simple Estimation
By extracting equation (4) we can get the follow-

ing formula to calculate the energy consumption in
processor.

EDP (n) = A(nClatch+Co)V 2Nc
2(to+tp/n)(5)

Each parameter is the same as we have already
defined in section 2.

In defining the detailed value for each parame-
ter, we set the processor with 20-stage fixed depth
pipeline to serve as the baseline processor which
is similar as the pentium 4 architecture. For sim-
plicity, we assume that average activity (A) will
keep as a constant for different pipeline designs
and for different programs intervals during runtime.
And we follow the assumption in Shimada’s pa-
per that the latches in pipeline approximately con-
sume 30% of the total processor power in a 20-stage
pipeline. Thus, we can get the latch capacity for
each stage (Clatch) to be about 1.5% of total capac-
ity, with Co providing the left 70% of total capacity.
tp and to are set to be 140 FO4 and 2.5 FO4 respec-
tively, to represent a certain technology, as paper3)
described.

After simplification, equation (5) shows that EDP
directly depends on the pipeline design and the per-
formance.

(2) Modified Wattch toolset
The previous method is a bit rough since we sim-

ply assume the activity (A) of each breakdown pro-
cessor unit to keep unchanged during the runtime.
In modern processors, with the utilization of clock
gating, this activity will vary a lot for different pro-
grams during different runtime periods. Wattch
toolset9) has provided several ways to estimate run-
time energy with clock gating utilization. We use
cc3 in Wattch toolset to estimate the power with
sophisticated clock gating, which is already widely
applied in modern processors. In this clock gating
method cc3, power is scaled linearly with port or
unit usage, except that unused units dissipate 10%
of their maimum power. The factor 10% exists be-
cause it is impossible to turn off a unit totally when
it is not needed, in the practical circuits.

Since in wattch 1.02 it used a fixed traditional
8 stage pipeline, we modified it to adopt proces-
sors of higher frequency, such as 20 stages. Fur-
thermore, because of how Wattch provides the dis-
sipated power, it is not easy to determine the break-
down power consumed in pipeline latches, since it
do not explicitly have a part related to pipeline reg-
isters. Thus we made an approximate assumption
that the power consumed in pipeline registers is a
proportion to the total clock power, and this pro-
portion varies linearly according to the change of
pipeline depth.

3.2 Processor Parameters
Table 1 gives the baseline processor configuration.
Other than the configuration showed in table 1,

we need to define other parameters which change
according to the modification of pipeline depth.

Table 1 Processor configuration

Processor 4-way out-of-order issue,
128-entry RUU, 64-entry LSQ,
4 int ALU, 2 int mult/div,
4 fp ALU, 2 fp mult/div,
4 memory ports

Branch Prediction 8K-entry gshare, 6-bit history,
2K-entry BTB,16-entry RAS

L1 Icache 64KB/32B line/2way
L1 Dcache 64KB/32B line/2way

L2 unified cache 2MB/64B line/4-way
Memory 64 cycles first hit,

2 cycles burst interval
TLB 16-entry I-TLB,

32-entry D-TLB,
128 cycles miss latency

Table 2 Some Detailed Processor Parameters

n to + tp/n Freq. IL1 DL1 L2 ALU MPLAT
4 37.5 0.2533 1 1 4 1 4
8 20 0.4750 2 2 7 2 8
12 14.2 0.6706 2 2 10 2 12
16 11.3 0.8444 3 3 13 3 16
20 9.5 1.0 4 4 16 3 20
24 8.33 1.14 4 4 20 4 24
28 7.5 1.2667 5 5 23 4 28
32 6.88 1.3818 5 5 26 5 32
36 6.34 1.4870 6 6 29 5 36
40 6 1.5833 7 7 32 6 40

Assume that the baseline 20-stage pipeline has a
clock frequency of 1GHz, the frequency can be cal-
culated as follows:

f(n) =
to + tp/20
to + tp/n

× 1GHz (6)

We have already defined tp as 140 FO4 and to
to be 2.5 FO4. It is easy to get frequency for each
pipeline design.

Branch misprediction penalty also varies as the
pipeline depth changes. We assume that it changes
linearly to the number of pipeline stages.

We used Cacti 3.0 toolset10) to calculate the la-
tency of cache of baseline processor configuration.
For example, the L1 data cache of 90um technol-
ogy will have 21.14-FO4 access latency. Divided by
the logic depth (latch overhead excluded), we can
get the corresponding access latency in cycles. Sim-
ilarly, this calculation also applies to the L2 cache
latency. We can have the following table for these
parameters.

Table 2 lists some groups of these parameters used
in our simulation, from 4 stages to 40 stages. The
column “to + tp/n” uses FO4 as the unit and col-
umn “Freq.” uses a unit of GHz. Columns “IL1”,
“DL1”, “L1”, “ALU”, and “MPLAT” represnt the
latencies for level 1 instruction cache, level 1 data
cache, level 2 cache, integer alu, and branch mispre-
diction penalty. Cycle is the unit for these columns.
In our simulation, integer ALU latency in table 2
applys only for the caculation of dependent effective
address while keeps to be 1 cycle for other depen-
dent integer executions because of the help of an
aggressive bypassing network.

Other parameters, such as integer MULT and
floating point ALU/MULT, make relatively small

3

average

 80%

 100%

 120%

 140%

 160%

 180%

 200%

 220%

 5 10 15 20 25 30 35 40

N
or

m
al

iz
ed

 E
D

P

Number of Pipeline Stages

bzip2
gcc

perlbmk
vortex

 60%

Fig. 1 Normalized EDP of fixed pipeline depth

influences to IPC with the changes of pipeline depth,
according to Shimada’s previous paper.

4. Results and Analysis

In this section, firstly, we will present the EDP
results of fixed pipeline depth, with the pipeline
varies from 4 stages to 40 stages. Then, we will
show the results of pipeline with changeable depth,
from a PSU enabled 16-stage pipeline to a 40-stage
pipeline.

4.1 Results of fixed Pipeline Depth
In this subsection, we follow the previous re-

searchers’ work2),3) under our experiments environ-
ments. It is also precedent work for the tests of PSU
applied pipelines.

Figure 2 shows the EDP results of pipelines from
4 stages to 40 stages. The x-ais denotes the number
of pipeline stages and the y-axis denotes the normal-
ized EDP results. The energy in this series of ex-
periments is given by the simple estimation method,
described in section 3.1. For each benchmark, all of
the EDP results “EDP (n)” are normalized by the
baseline 20-stage pipeline result “EDP (20)” of the
same benchmark. Therefore, these curves are con-
nected at the 20-stage point.

In this figure, the solid line represents the average
values of all 8 SPECint2000 benchmarks and the
dashed line is the EDPs of individual benchmark.
For simplicity, we only list the results of bzip2, gcc,
perlbmk, and vortex here. Other benchmarks like
gzip, mcf, parser, and vpr show a similar shape to
one of the benchmark drawn in figure 1.

Figure 1 clearly shows that optimal EDP result
occurs at the 12-stage pipeline design point, aver-
aged from all the 8 integer benchmarks we have
studied. At this point, each pipeline stage will
have 14.2 FO4 inverter delay, including 2.5 FO4
latch overhead. With the 12-stage pipeline, we can
achieve an EDP reduction of 21.4%, compared with
a 20-stage design, averagely for the 8 integer bench-
marks.

Besides the optimal depth finding, figure 1 also
shows that different benchmarks do show different
behaviors at the same design point. We can see that

for benchmark bzip2 and gcc, the optimal EDP can
be obtained by a 12-stage pipeline, which is the same
as the average line gives. For the benchmark vortex,
the pipeline with 18 stages has the smallest EDP
result. It is a deeper pipeline with 10.3 FO4 per
each stage. For benchmark perlbmk, the optimal
EDP occurs in the 6-stage pipeline design, which is
a relatively shallow pipeline. Also, considering the
benchmarks that are not listed in this figure, the
optimal design should be 12-stage for mcf, parser,
and vpr. And it should be 6-stage for gzip. There-
fore, using 12-stage design to be the optimal value
means that we must experience less EDP reduction
in benchmarks like gzip, perlbmk, and vortex, 3 out
of all 8 benchmarks.

4.2 Adopting ideal PSU
In previous subsection, we studied the optimum

pipeline design point among several fixed depth
pipelines by considering EDP metric. In this subsec-
tion, we will pursue our research on pipelines with
PSU utilization, i.e., on pipelines that have multi-
useable depths.

From the proposal of PSU, we can see an n-stage
pipeline (at U1 mode) can dynamically change to
an n/2 one under U2 mode, or to an n/4 pipeline
unde U4 mode during the program execution. Here,
U1, U2, and U4 represents the unification degree
1, 2, and 4, respectively, as we have defined in sec-
tion 2.2. Because program may experience different
phases during the whole execution, if PSU selects
suitable unification degree for each aspects, it can
show better efficiency in reducing EDP, compared
with fixed length pipelines.

To simplify our stuides and focus on the influces
introduced by the pipeline design point only, in this
paper, we chose the ideal PSU adoption method de-
scribed in previous paper7). For example, we ap-
ply this method on a 20-stage pipeline. Firstly, we
divided program into fixed length intervals (in sim-
ulation, 10k instructions per each interval). Then
we ran the program for three times, in fixed 20-
stage mode, fixed 10-stage mode, and fixed 5-stage
mode, similarly as we did in previous section. And
we recorded the EDP of each interval during the
execution. After the three executions, we collected
the EDP data of each interval of all U1, U2, and U4
mode for the 20-stage pipeline. Then, in the ideal
PSU adoption mode, we could set the best unifica-
tion degree at the beginning of an insturction in-
terval based on the profiling data. This method is
a theoretical optimal one and can not be achieved
in real execution because it is based on the post-
simulated trace analysis. It is useful to show the op-
timum EDP reduction that a PSU enabled pipeline
can achieve and may help us to find the optimal
pipeline depth for a pipeline with changeable depths.

Figure 2 shows the normalized EDP of PSU en-
abled pipelines. The EDP is calculated by the sim-
ple estimation method. Its x-axis denotes the differ-
ent pipeline configuration, from 16-stage to 40-stage
pipelines with ideal PSU adoption. The notation
like “20/10/5” represents a PSU enabled pipeline

4

perlbmk

gcc

Avg.

bzip2

vortex

 50%

40/20/1036/18/932/16/828/14/724/12/620/10/516/8/4

N
or

m
al

iz
ed

 E
D

P

Stage Number of PSU enabled Pipeline (U1/U2/U4)

 90%

 80%

 70%

 60%

 100%

Fig. 2 Normalized EDP of PSU enabled pipelines

with 20 stages in U1, 10 stages in U2, and 5 stages
in U4 mode. We will use such notation in the lat-
ter parts of the paper. The y-axis denotes the nor-
malized EDP results. The Avg. line represents the
values averaged from all the 8 SPECint2000 bench-
marks. 4 lines of individual benchmark are also
listed to show the influences by different program
characteristics. The EDP results “EDP (n/n

2 /n
4)”

of each benchmark are normalized by the 20-stage
fixed depth result “EDP (20)” of the same bench-
mark.

From figure 2 we can see that after ideal PSU
adoption, the optimal pipeline depth occurs at a 24-
stage pipeline design point, averaged from 8 bench-
marks. At this design point, each pipeline stage
has a depth of 8.3 FO4 inverter delay, including 2.5
FO4 latch overhead. Furthermore, this design point
is also the best one for the individual benchmark
consideration. All of the 8 benchmarks experience
the smallest EDP under the 24/12/6 pipeline con-
figuration with ideal PSU adoption. As the figure
displays, the lines of individual benchmark demon-
strate a quite similar shape as the Avg. line, except
that the EDP reduction differs due to benchmark
characteristics. This observation indicates that the
PSU applied pipeline can greatly alleviate the influ-
ence introduced by program behavior. And a certain
design point with well-designed dynamic PSU adop-
tion may be able to fit for a large range of programs.

Another observation from figure 2 is that the devi-
ations between different pipeline configurations are
not large. For most of the benchmarks, the devia-
tions are approximately within 10%. It is reason-
able because from the design of PSU, we can choose
from a relatively high, a moderate, and a relatively
low clock frequency while adopting different pipeline
stage unification degree dynamically. And most of
the differences in figure 1, introduced by varying
pipeline depth, can be hidden in the ratio of differ-
ent unification degrees.

Also, figure 2 shows that after applying PSU, we
can even obtain more EDP reduction compared to
the best fixed pipeline depth in figure 1. In figure
1, the optimal depth occurs at a 12-stage pipeline,
considering all benchmarks averagely. And the EDP
result is 78.6% of the fixed depth 20-stage pipeline
one. Yet the 24/12/6 PSU applied pipeline in figure

average

 80%

 100%

 120%

 140%

 160%

 180%

 200%

 220%

 5 10 15 20 25 30 35 40

N
or

m
al

iz
ed

 E
D

P
(W

at
tc

h)

Number of Pipeline Stages

bzip2
gcc

perlbmk
vortex

 60%

Fig. 3 Normalized EDP of fixed pipeline depth (Wattch)

vortex

perlbmk

gcc

bzip2

Avg.

 70%

 100%

 105%

 110%

40/20/1036/18/932/16/828/14/724/12/620/10/516/8/4

N
or

m
al

iz
ed

 E
D

P
(W

at
tc

h)

Stage Number of PSU enabled Pipeline (U1/U2/U4)

 90%

 85%

 80%

 75%

 95%

Fig. 4 Normalized EDP of PSU enabled pipeline (Wattch)

2 can get the EDP of 71.6%, which saves about 9%
more EDP, compared with the fixed depth 12-stage
pipeline value. Individually, for gcc, the 24/12/6
stage can achieve about 12% more EDP reduction
than the fixed depth 12-stage design point. This ad-
ditional reduction is obtained by experiencing 32%
instructions in the 24-stage, 29% instructions in
the 12-stage, and 39% instructions in the 6-stage
pipeline. This observation indicates that even for a
single program execution, different periods will re-
quire different pipeline configuration to achieve the
best power/performance result. By using PSU, dy-
namically predicting and adopting a best pipeline
depth is necessary and may probably show more ef-
ficiency in the modern processors, if frequency goes
higher.

4.3 EDP results after applying clock gat-
ing

In this section, we will show the EDP results after
using Wattch to provide a sophisticated clock gat-
ing. We did the same two series of tests, one for fixed
depth pipeline during a program execution (figure
3), the other for pipelines with PSU utilization (fig-
ure 4). The notations, x-axis, and y-axis are similar
to the ones in figure 1 and 2, except that the EDP
results are collected by Wattch toolset.

The lines in figure 3 and figure 4 show a similar
shape as the ones in figure 1 and 2, respectively,
except that the EDP reduction becomes smaller af-
ter applying clock gating. This is because that

5

Table 3 nopt for benchmarks (Wattch cc3 applied)

nopt benchmarks
12 gcc, gzip2, mcf, parser, perlbmk, vpr
18 bzip2
24 vortex

clock gating can eliminate the total processor en-
ergy greatly and will leave little space for other en-
ergy saving technologies.

And for the fixed pipeline depth tests, the results
show that the best design point moves to the deeper
pipeline for some benchmarks. The optimal fixed
depths for these benchmarks are shown in table 3.

Figure 4 is the results after applying PSU. We
can get a similar conclusion from this figure as
we did with figure 2. Even with the clock gat-
ing, the 24/12/6-stage pipeline can achieve 15.5%
EDP reduction, compared with the beasline 20-stage
fixed depth pipeline. Compared with the 12-stage
pipeline which is the optimal design for a fixed depth
pipeline, the 24/12/6-stage pipline can achieve 6.4%
more EDP reduction, averaged from 8 benchmarks.
This indicates that the PSU utilization will have ef-
ficiency even with a sophisticated clocking gating
application.

5. Conclusions and Future Works

In this paper, we have studied relationship be-
tween EDP and pipeline depth for pipelines with
fixed depth and ideal PSU utilization. Our re-
sults show that averagely, the optimal depth will be
12 stages for a fixed depth pipeline but the differ-
ences among individual programs and runtime pe-
riods can hardly be negligible. By applying ideal
PSU method, we find that more EDP reduction can
be achieved by high clock frequency pipeline de-
sign. The EDP differences are with 10% between the
deep pipelines, after PSU utilization. Among them,
a 24/12/6 pipeline design can obtain the smallest
EDP, either with fixed unit activity or with com-
plex clock gating application. And it saves about
7% more EDP than the 12-stage pipeline, which is
the optimal one for a fixed depth pipeline design.

Currently, only dynamic power is considered in
our study. Yet related studies show that PSU can
also eliminate leakage power by applying supply
voltage gating to disable pipeline registers. Since the
leakage power occupies larger and larger percentage
of the total power in current high clock frequency
processors, to study the optimum pipeline depth se-
lection with taking leakage power into account will
be one of our future work.

Acknowledgments This research is partially
supported by Grant-in-Aid for Fundamental Scien-
tific Research (S) #16100001 from Ministry of Ed-
ucation, Culture, Sports, Science and Technology
Japan.

References

1) Hrishikesh, M. S., Jouppi, N. P., Farkas, K. I.,
Burger, D., Keckler, S. W., and Shivakumarr, P.:

The Optimal Logic Depth Per Pipeline Stage is 6 to
8 FO4 Inverter Delays, 29th Annual International
Symposium on Computer Architecture, Alaska, U.S.,
pp. 14-24 (2002).

2) Srinivasan, V., Brooks, D., Gschwind, M., Bose, P.,
Zyuban, V., Strenski, P. N. , and Emma, P.G.: Op-
timizing Pipelines for Power and Performance, 35th
Anuual International Symposium on Microarchitec-
ture, Istanbul, Turkey, pp. 333-344 (2002).

3) Hartstein, A., and Puzak, T. R.: Optimum
Power/Performance Pipeline Depth, 36th Annual
International Symposium on Microarchitecture, San
Diego, U. S., pp. 117-128 (2003).

4) Shimada, H., Ando, H. and Shimada, T.: Pipeline
Stage Unification: A Low-Energy Consumption
Technique for Future Mobile Processors, Interna-
tional Symposium On Low Power Electronics And
Design 2003 , Seoul, Korea, pp. 326-329 (2003).

5) Koppanalil, J., Ramrakhyani, P., Desai, S.,
Vaidyanathan, A. and Rotenberg,E.: A Case for Dy-
namic Pipeline Scaling, International Conference on
Compilers, Architecture and Synthesis for Embedded
Systems 2002 , Grenoble, France, pp. 1-8 (2002).

6) Gonzalez, R. and Horowitz, M.: Energy Dissipation
in General Purpose Microprocessors, IEEE JSSC ,
Vol. 31, No. 9, pp. 1277-1284 (1996).

7) Yao, J., Shimada, H., Nakashima, Y., Mori, S., and
Tomita, S.: Program Phase Detection Based Dy-
namic Control Mechanisms for Pipeline Stage Uni-
fication Adoption, International Workshop on Ad-
vanced Low Power Systems 2006 , Cairns, Australia,
pp. 39-46 (2006).

8) Burger, D. and Austin, T. M.: The SimpleScalar
Tool Set, version 2.0. Technical Report , CS-TR-97-
1342, Univ. of Wisconsin-Madisoon Computer Sci-
ences Dept. (1997).

9) Brooks, D. Brooks, Tiwari, V., and Martonosi,
M.: Wattch: A Framework for Architectural-Level
Power Analysis and Optimizations, 27th Interna-
tional Symposium on Computer Architecture , Van-
couver, Canada, pp. 83-94 (2000).

10) Shivakuma, P. and Jouppi, N. P.: Cacti 3.0: An
Integrated Cache Timing, Power and Area Model.
Technical Report 2001/2 , Compaq Computer Cor-
poration, (2001)

11) Shimada, H., Ando, H. and Shimada T.: Pipeline
with Variable Depth for Low Power Consumption
(in Japanese), IPSJ Technical Report , 2001-ARC-
145, pp. 57-62 (2001).

12) Shimada, H., Ando, H. and Shimada, T.: Pipeline
Stage Unification for Low-Power Consumption, Cool
Chips V , Tyoko, Japan, pp. 194-200, (2002).

6

