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Abstract

In recent years, enjoying multimedia contents with
portable devices become popular. These multimedia pro-
cessing workloads are too heavy workload for a conven-
tional processor so that current portable devices implement
additional dedicated processor for multimedia processing.
But we have to left conventional processor to execute OS
and miscellaneous processing so that this solution enlarges
cost, footprint, and power consumption compared to one
chip solution.

In this paper, we propose the processor called OROCHI
which can execute two instruction sets simultaneously. The
processor can execute VLIW instruction set for multimedia
processing and conventional instruction set for OS and mis-
cellaneous processing. In this paper, we introduce OROCHI
processor which is based on a VLIW pipeline. The proces-
sor decodes either of the two instruction sets in its corre-
sponding front end. After that, the processor decomposes
and translates the conventional instructions and insert them
into available slots in VLIW instructions. By these means,
we can successfully unite the two processors of different
purposes into one specific processor. As a result, we can
reduce hardware cost, footprint, and power consumption to
meet the rising demands of portable media processing mar-
ket.

1 Introduction

In recent years, enjoying high-quality multimedia con-
tents with portable device becomes popular. But decoding
high-quality multimedia contents is very heavy workloads
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so that it incurs a heavy load for the processor. So, the pro-
cessor which is implemented in such portable devices has to
achieve high performance on multimedia processing to suit
this trend. If we implement the processor which runs with
high clock frequency and supports wide superscalar execu-
tion, the problem will be resolved easily. But those proces-
sors usually consume much power and it is unacceptable for
the portable devices in two points. Firstly, the portable de-
vices are usually implemented in small chassis so that those
power-hungry processors are hard to be employed because
of heat liberation problem. Secondly, they commonly work
on batteries so that the processor also have to reduce power
consumption to extend the battery life as far as possible.
The power-hungry processors are not suitable for this re-
quirement. So, the processors which are utilized in these
devices have to achieve not only high performance but also
low power consumption.

Putting emphasis on both performance and battery life,
the processor must exploit high instruction throughput with
a simple hardware implementation. Considering the heavy
weighted multimedia workload in the modern portable de-
vices, a VLIW processor is usually a good candidate since
many ILP in multimedia programs can be easily detected
by the compiler. Hence utilizing the well designed mul-
timedia related libraries, VLIW processor achieve a good
performance. However, respiting its good efficiencies in the
media processing area, a VLIW processor is less competi-
tive in the application with few ILP in static. Moreover, the
library support for general purpose applications in VLIW is
comparatively weak. In most portable device implementa-
tions, a general purpose processor is also included to han-
dle the OS and miscellaneous codes. But implementing two
processors increases footprint of chips, cost of chips, and
power consumption of chips compared to the one chip de-
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sign.

To alleviate this problem, we propose a processor called
OROCHI which can execute both the conventional instruc-
tion set and the VLIW instruction set simultaneously. From
the microarchitecture viewpoint, there are various design
candidates to implement the idea of OROCHI processor.
To consider the OROCHI processor implementation, first
of all, we have to choose the base pipeline of the processor.
Basically, it can be either VLIW processor pipeline based
or superscalar pipeline based. Currently, we are considering
both of them in our research. In this paper, we introduce the
outline of one OROCHI processor implementation which
is based on a VLIW processor pipeline. In this design of
the OROCHI processor, the processor executes the instruc-
tions of conventional processor by inserting them into avail-
able slots in the VLIW instructions after decomposition and
translation. The OROCHI processor enables good power
performance ratio in multimedia applications and utilizes
legacy software resources in one chip. As a result, we can
reduce cost, footprint, and power consumption.

In this paper, we introduce outline of the OROCHI pro-
cessor which we are currently designing. The rest of this
paper is organized as follows. Section 2 describes the out-
line of the OROCHI processor. Section 3 explains more de-
tailed microarchitecture of the OROCHI processor. Finally,
Section 4 concludes this paper and describes future works.

2 Outline of the OROCHI Processor

As described in Section 1, there are many design can-
didates to implement the OROCHI processor. In this pa-
per, we describe the OROCHI processor based on a VLIW
pipeline.

2.1 Outline of the OROCHI Processor
Based on a VLIW Pipeline

Figure 1 outlines concept of the OROCHI processor
based on a VLIW pipeline. The left part of Figure 1 de-
notes organization of current portable devices which deals
with high-quality multimedia contents. It utilizes a conven-
tional processor (scalar processor) and a media processor
(VLIW processor) for this purpose. The conventional pro-
cessor usually executes OS codes and miscellaneous low
workload applications. To reduce the develop period of the
device, exploiting the conventional processor is very impor-
tant because there are much inheritance codes and libraries
for the conventional processor. On the other hand, the me-
dia processor is implemented to accelerate media process-
ing. In usual media processing, there are many much data
parallelism in the program execution so that the typical me-
dia processor employs instruction set which can easily to
exploit data parallelism such as VLIW, SIMD, and so on.
In our implementation, we assumed a VLIW instruction set
based media processor as shown in Figure 1.

The right part of Figure 1 denotes the organization of
our proposal, the OROCHI processor based on the VLIW
pipeline. As shown in Figure 1, there are some empty in-
struction slots in the VLIW instructions. Even if the VLIW
processor executes multimedia application which can easily
fill instruction slots in the VLIW instructions, there’s pos-
sibility that the compiler cannot feed the whole instruction
slots. So, we thought that if we can effectively insert the in-
structions of the conventional processor into empty slots in
the VLIW instructions, we can integrate the two processors
of different purpose into the one processor without perfor-
mance loss. As shown in right part of Figure 1, the instruc-
tions of the conventional processor are inserted into nearest
empty instruction slots of the VLIW instructions.

One possible problem for this design is that there may
not be sufficient empty slots to insert other instructions un-
der a multimedia workload. However, as in many current
VLIW processors, the number of functional units is usually
larger than the instruction slots in a VLIW instruction. As
an example, Itanium 2 has 11 functional units even if it can
issue 6 instructions simultaneously in maximum[1]. This
architecture is aimed to reduce NOP operation in the in-
struction slot of the VLIW instruction. Even if we execute
multimedia program, there are possible low parallelism ar-
eas in the program. In that area, there’s a possibility that
we can only fill one or two instruction slot in the VLIW
instruction. If the VLIW instruction is too long and it has
too many instruction slots, we have to fill many NOP oper-
ations into the empty instruction slots correspondingly and
it causes low code density. The low code density caused
by the NOP instruction increases instruction cache misses
so that the processor reduces the number of the instruction



slots compared to the number of the functional units. Addi-
tionally, many of current VLIW processors have limitations
in combining operations or insertion points of operations in
the instruction slots. If the processor permits possible com-
binations of operations and free insertion method, it has to
prepare complex data paths which will degrade clock fre-
quency consequentially. To alleviate this problem, the pro-
cessor limits combination of operations or insertion point
of operations in the instruction slots, and this limitation fur-
therly increases free functional units in the execution. For
these two reasons, we can draw a conclusion that we can
still find sufficient slots in VLIW instructions to insert other
general purpose instructions even under a heavy multimedia
workload.

In this way, the VLIW instructions and the conventional
instructions are executed simultaneously. Thus, the exe-
cution of the OROCHI processor is simultaneous multi-
threading or SMT execution. By using an OROCHI pro-
cessor, the portable device can utilize an unified processors
and thus reduces cost, footprint and power consumption.

2.2  Quality of Service in SMT Execution

For the conventional SMT execution, there is usually
not a Quality of Service or QoS requirement and the corre-
sponding measurement. Hence, our SMT execution based
OROCHI processor does not verify QoS basically. But in
many embedded systems including the portable devices,
QoS guarantee is one important requirement. For example,
a movie usually plays 30 frames per second so that the de-
coding of each frame must be done in 1/30 second. So, the
processor have to guarantee that the frame must be decoded
with one thirties seconds. To satisfy this requirement, we
have to add an arbitration hardware to support QoS guaran-
tee.

Under typical usage of the OROCHI processor, the pro-
cessor executes both multimedia processing thread written
in the VLIW instruction set and OS thread written in the
conventional instruction set simultaneously. From the mul-
timedia processing side, there are many deadlines. The pro-
cessor has to guarantee that the completion of task before
the deadline to meet the media QoS requirement. From
the OS side, real time operations are required in many em-
bedded systems. The processor has to response faster than
the allowed delay after interrupt occurs. To fulfill these re-
quirements, we are planning to add the hardware mecha-
nism which controls the instruction fetch from threads.

2.3 Current Implementation Plan

Currently, we are designing one implementation of the
OROCHI processor to manufacture chips by way of trial.
We selected ARMv4 instruction set [2] for conventional in-
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Figure 2. Outline of block diagram.

struction set and FR-V 550 instruction set [3] for VLIW
instruction set. In this subsection, we will introduce some
notable characteristics of ARMv4 and FR-V 550 instruction
set.

1. ARMv4 instruction set

Each instruction of ARM instruction set is consist of
4 byte length. It employs load/store architecture like
RISC instruction set. But on the other hand, it includes
complex operation like CISC instruction set. These
features are adopted to achieve one of the most im-
portant demands in embedded processors; to improve
the code density. Such policy is clearly shown in the
“multiple load/store instruction” which aims to reduce
load/store instructions in spill codes around function
call codes. Under this policy, further instruction re-
duction is achieved by treating program counter as a
specific register number 15. By including the regis-
ter number 15 into “multiple load/store instruction” of
spill code around function call codes, we can reduce
jump and link instruction and jump register instruction
around function call codes. ARM applies flag(sign,
zero, carry, and overlow) based conditional execution
to all instruction. It can reduce not only branch mis-
prediction penalty but also the number of instructions
by eliminating branch instructions in short if-then-else
clause.

2. FR-V 550 instruction set

Each VLIW instruction of FR-V 550 contains 8 op-
erations. From limitation from number of functional
units, it can include 4 integer ALU operations in max-
imum, 4 FP or media ALU operations in maximum, or
2 branch operations in maximum into each VLIW in-
struction respectively. Similar to current major VLIW
processors, FR-V 550 employs many registers (64 en-
tries), conditional execution, and pre-load instructions
to exploit ILP in static.

The target devices of the OROCHI processor are portable
devices so that we selected the instruction set used in those



areas. There are some complicated instructions in ARM
processor so that we have to develop a complicated trans-
lator for translation. Details of ARM instruction translation
are described in Section 3.2.

3 Outline of Microarchitecture

In this section, we talk more detailed microarchitecture
of the OROCHI processor which we are currently design-
ing. Firstly, we talk outline of pipeline. After that, we in-
troduce details of some complicated blocks in the pipeline.

3.1 Outline of Pipeline

Figure 2 outlines the block diagram of the OROCHI pro-
cessor. There are two fetch units in the figure. One of them
fetches the conventional instructions and the other fetches
the VLIW instructions. After fetching both instructions, the
VLIW instructions run through a simple decoder and are en-
queued into the instruction queue. In current plan, we treat
one slot of the VLIW instruction as an internal instruction.
Thus, we don’t need to translate the VLIW instructions.
Compared to the VLIW instructions, the general purpose
instructions of ARM have to pass more complicated logic
units which translate them into the internal instructions. Ac-
cording to the complexity of the ARM instruction set, some
ARM instructions must be decomposed into several internal
instructions like Intel P6 architecture [4] or Netburst archi-
tecture [5]. After decomposition, all the translated internal
instructions from ARM are inserted into the empty slots of
the VLIW instructions in the instruction queue. The internal
instructions in the queue will be issued if all of the previ-
ous line instructions have been issued. The issued instruc-
tions work similarly as normal FR-V 550 instructions —-
accessing register files and utilizing functional units for ex-
ecution. The pipeline of the OROCHI processor is based on
the VLIW implementation so that the processor has to stall
the internal instruction execution when one of instruction
which will be issued simultaneously occurs pipeline stall.

Figure 3 outlines the instruction decomposition and in-
sertion in the OROCHI processor based on FR-V 550 ar-
chitecture and ARM architecture. The backend pipeline is
based on FR-V 550 pipeline, which has 4 integer ALUs, 4
FP or media ALUs, and 2 branch units. A VLIW instruc-
tion of FR-V 550 contains 8 internal instructions in maxi-
mum. When the VLIW instruction moves into the instruc-
tion queue, the internal instructions are decomposed and in-
serted into the instruction slots which are connected to the
suitable functional units. As discussed in its concept, the
internal instructions from ARM will occupy the empty slots
in the instruction queue after the decoding of VLIW instruc-
tions.
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Figure 3. Instruction decomposition and in-
sertion in the OROCHI processor based on
FR-V 550 architecture and ARM architecture.

3.2 Decomposition and Translation of
ARM Instructions

From the above discussion, one key component in the
OROCHTI architecture is the instruction translation unit. It
decodes ARM instruction for latter insertion. Moreover,
the decomposition of some complicated ARM instruction
is also handled in this unit.

To achieve insertion easily, we decompose the ARM in-
structions into simple internal instructions which can be ex-
ecuted in one clock cycle.

3.2.1 Outline of ARM Instruction Set

Figure 4 shows samples of ARM opcodes and operations.
To simplify operation notation, we use “+” to represent all
ALU operations and “<<” for shifts. Also, we use “load”
operation to represent load/store operation.

As shown in Figure 4(a), the ARM instruction set can
apply the shift operation before the ALU operation. In our
implementation, we divide this kind of instruction into two
operations as follows.

1. Shift Src2 by Src3.

2. Add 1. to Srcl.

As shown in Figure 4(b), the ARM instruction set can
apply the shift operation before effective address genera-
tion similar to the ALU operation. Moreover, the ARM in-
struction set permits a load/store operation to writeback the
generated effective address into Srcl or the base register. In
this case, we need to divide the load/store operation into a
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Figure 4. Sample of ARM opcodes and oper-
ations.

Srcl update operation and a load/store operation to acquire
register write port for updated Src1. Furthermore, the ARM
instruction set permits both pre updating and post updating
for Srcl. Thus, in the worst case, we need to divide one
load/store instruction into following three internal instruc-
tions.

1. Shift Src2 by ImmS5.
2. Add 1. to Srcl and writeback it to the register file.

3. Execute load/store operation with effective address
generated by 2.

Moreover, There is more complicated instruction called
multiple load/store instruction in the ARM instruction set.
The multiple load instruction can load consecutive data
from the main memory into several register entries. The
register entries which are used for this operation marked
with “1” in the register list potion of Figure 4(c). To de-
compose this instruction, we need to prepare following two
instructions for each load/store operation.

1. Update Srcl to generate effective address.

2. Execute load/store with effective address generated by
1 iteratively.

In the worst case, we have to decompose this instruction
into more than 30 instruction in maximum.
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Figure 5. Outline of ARM instruction decom-
poser and translator.

Figure 4(d) shows multiply instructions of the ARM in-
struction set. We decided that the processor decomposes
a multiply instruction into several partial product (32bit x
8bit multiply) operations and accumulation of partial prod-
uct operations. This decomposition is aimed to reduce mul-
tiple latency instructions: to simplify instruction scheduling
in insertion of the decomposed instruction. We assumed
that a 32bit x 8bit multiply operation will be finished in 1
clock cycle. The multiply instructions are decomposed into
several 32bit x 8bit partial product calculations and several
partial product accumulations.

Figure 4(e) shows large PC offset branch of ARM in-
struction set. As introduced in Section 2.3, the short PC
offset branch is achieved by arithmetic operations into the
register number 15. But it only permits 8 bit length offset
so that we use this instruction to achieve a large offset.

3.2.2 Organization of ARM Instruction Translator
and Decomposer

The types internal instruction, which is the target form of
ARM instruction translation results are listed in Table 1. By
using those internal instructions, the ARM instructions are
decomposed and translated with given patterns which are
shown in Table 2.

This processing is done in succedent stage of the fetch
stage as shown in Figure 2. It is denoted as “Translator” in
a generalized OROCHI processor as in Figure 2, and actu-
ally also uses part of its logic to perform as a “decomposer”
in ARM instruction set. Figure 5 demonstrates the outline
of the translator and decomposer which are based on the dis-
cussions in Section 3.2.1. We design that the translator and
decomposer can output up to 4 internal instructions in each
clock cycle. If one ARM instruction is decomposed into
more than 4 internal instructions (e.g. multiple load/store),



Table 1. Type of internal instructions

| Type | Behavior

E 3 operand style ALU arithmetic
(for general arithmetic and logical operation)
S Shift (logical shift, arithmetic shift, rotate)
M 8 types of 32b * 8b multiple for MAC instruction
(combined with “m” internal instruction)
m Support arithmetic instruction for MAC instruction
(absolute, partial product accumulation, sign check, invert sign, etc.)
a Address generation via 3 operand arithmetic
(which can writeback generated effective address to base register)
L Load / store instruction
B PC offset conditional branch
S Select one register value from 2 registers
Table 2. Instruction decomposition pattern.
| ARM Instruction | Internal instructions | Number of instructions
ALU(without shift) E 1
ALU(with shift) SE 2
Multiply(32b * 32b + 32b = 32b) [Mm]*4 8
Multiply(32b * 32b + 64b = 64b) [Mm]*8 m 17
Multiply(signed32b * signed32b = 64b) [Mm]*8 E m*3 22
Load / store (without shift, post base update) La 2
Load / store (without shift, pre base update) alL 2
Load / store (with shift, post base update) LSa 3
Load / store (with shift, pre base update) SalL 3
Multiple load / store (N: number of possible registers) | aa [aL]*N a 2% N+3
Branch B 1
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the translator and decomposer work as a multi-cycle oper-
ation. During decomposition and translation, the “Transla-
tor” also needs to assign additional register entries for the
decomposed ARM instructions. Thus, register renaming
logic is also included as part of the “Translator” circuit.

Figure 5 assumes that the “Translator” decomposes and
translates only one ARM instruction in each clock cycle.
But there is high possibility that indecomposable ARM in-
structions may continue in the program execution. So, in
current plan, we prepare two ARM “Translator” to increase
throughput of ARM instructions.

As introduced in Section 2.3, the ARM instruction set
can apply conditional execution to all of above instructions.
So, we have to keep this conditional execution information
after decomposition and translation. Fortunately, the condi-
tional flags of the FR-V 550 instruction set and the ARM
instruction set is the same so that we can easily to keep the
conditional execution information after decomposition and
translation.

3.3 ARM Instruction Insertion to In-
struction Queue

There are some trade-offs when inserting the decom-
posed and translated ARM instructions. Figure 6 illustrates
some of insertion method candidates.

Figure 6(a) shows the simplest insertion method that the
decomposed and translated ARM instructions are inserted

to be executed in sequential. In this case, because of the
serialized execution, the data dependencies are not needed
to be checked during insertion. And the execution laten-
cies of precedent instructions are not the issue because all
ARM instructions are decomposed into the internal instruc-
tions which can execute in one clock cycle. Thus the in-
sertion hardware can be designed to contain only a detector
to check weather or not the instruction slot connected to a
possible functional unit is free.

Figure 6(b) shows the insertion method that permits
overwrap execution. In this method, we don’t permit out-of-
order completion so that the insertion hardware only have
to check data dependencies in insertion. By decomposing
ARM instructions into internal instructions which can ex-
ecute in one clock cycle, the insertion hardware does not
have to consider out-of-order completion caused by multi
cycle latency instructions.

Figure 6(c) shows the insertion method that permits out-
of-order completion. In this method, we have to add re-
order buffer for ARM instructions to guarantee the program
order commit and the precise exception. This implemen-
tation increases hardware costs drastically. But it increases
performance of ARM instruction execution due to increased
resource utilization.

Currently, we are evaluating processor performance of
each insertion method with a software simulator. After that
evaluation, we can choose suitable organization with con-
sidering the performance demands of ARM program side.

3.4 Issue Instructions from Instructions
Queue

In the instruction issue stage, the VLIW issue hardware
issues a whole instruction line from the queue. If there’s a
instruction which cannot be issued due to unresolved data
dependency, the processor stalls the issue of all the instruc-
tions from the same line. This is a major strategy in VLIW
processor. This method can reduce complexity around in-
struction queue, but it also reduces performance due to stall.

The most possible stall is cased by L1 data cache miss.
In the usual instruction scheduling, the data dependent in-
struction which depends on a load instruction will be sched-
uled that the prior load instruction indicates a hit in L1 data
cache. This strategy reduces execution latency greatly if the
prior load instruction can be successfully found the data in
the L1 data cache. But once the L1 data cache miss occurs,
it stalls instruction issue for not only the dependent instruc-
tion but also instructions in same line. Moreover, usual in-
struction queue in VLIW processor does not permit issue of
following lines so that The L1 data cache misses degrades
performance greatly.

In usual VLIW program, they schedule instruction care-
fully to reduce performance loss caused by the L1 data



cache miss via utilizing a large instruction scope. But in
ARM instruction insertion of the OROCHI processor, we
only have a limited instruction scope so that there’s a high
possibility to suffer pipeline hazard due to L1 data cache
misses. To alleviate this problem, we may implement cache
hit/miss predictor like Compaq Alpha 21264[6]. By mov-
ing the instruction which is predicted to cause L1 data cache
miss, we can reduce the performance loss.

4 Conclusions ant Future Work

In this paper, we outlined the concept of OROCHI pro-
cessor which can execute both conventional instruction set
and VLIW instruction set simultaneously. We can replace
both multimedia processor and general purpose processor
in current portable devices by one OROCHI processor. The
OROCHTI processor is suitable for the demands of reduc-
ing processor footprint and power consumption compared
to two chips organization.

There are many design candidates to implement the
OROCHI processor and there are also many trade-offs. Cur-
rently, we are under discussion with software simulator re-
sults to propose them most effective implementation at the
microarchitecture level. In the future work, we finalize
those discussions and carry out chip level design. We are
planning to manufacture chips by way of trial to evaluate
the accurate performance and power consumption.
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