
A High-Speed Dynamic Instruction Scheduling Scheme
for Superscalar Processors

Masahiro Goshima Kengo Nishino Yasuhiko Nakashima Shin-ichiro Mori
Toshiaki Kitamura Shinji Tomita

Kyoto University
Yoshida Hon-machi, Sakyo-ku, Kyoto, Japan

fgoshima, k-nisino, nakashim, moris, kitamura, tomitag@i.kyoto-u.ac.jp

Abstract

The wakeup logic is a part of the issuing window and is
responsible to manage the ready flags of the operands for
dynamic instruction scheduling. The conventional wakeup
logic is based on association, and composed of a RAM and
a CAM. Since the logic is not pipelinable and the delays of
these memories are dominated by the wire delays, the logic
will be more critical with deeper pipelines and smaller fea-
ture sizes. This paper describes a new scheduling scheme
not based on the association but on matrices which repre-
sent the dependences between instructions. Since the up-
date logic of the matrices detects the dependencies between
instructions as the register renaming logic does, the wakeup
operation is realized by just reading the matrices. This pa-
per also describes a technique to reduce the effective size
of the matrices for small IPC penalties. We designed the
layouts of the logics guided by a 0:18�m CMOS design rule
provided by Fujitsu Limited, and calculated the delays. We
also evaluated the penalties by cycle-level simulation. The
results show that our scheme achieves 2.7GHz clock speed
for the IPC degradation of about 1%.

1. Introduction

One of the most straightforward ways to improve the IPC
(instructions per cycle) of a superscalar processor is to in-
crease the instruction issue width (IW) and the instruction
window size (WS). In fact, the early superscalar proces-
sors considerably improved the IPC by increasing IW;WS

as far as the number of the transistors permitted.
Recently, however, the clock speed becomes the main

factor which restricts IW;WS instead of the number of the
transistors. Since larger IW;WS does not necessarily result
in greater IPC, thoughtless increas of IW;WS would prob-
ably degrade the total performance.

Among the components of a processor, the wakeup logic
is estimated to be one of the main factors to restrict the clock
speed. The wakeup logic is a part of the issuing window and
is responsible to wake up sleeping instructions waiting for
its source operands in the window. Over the past few years,
gradually more studies have been made on reduction of the
wakeup delay [6, 9, 2, 10]. Most of them, however, are base
on the same principle as the most conventional scheme.

The conventional wakeup logic manages availability of
source operands based on association of a tag allocated to
the operand. When an instruction is issued, the tag allocated
to its result is broadcasted to all the instructions in the win-
dow. Each instruction compares the broadcasted tag with
the tags allocated to its source operands. If there is a match,
the corresponding source operand is marked available.

The wakeup operation is a kind of dependence detection
performed in the issuing window. The dependence, how-
ever, have been once detected by the register renaming logic
in the frontend of a processor. The detection in the window
is more complicated than in the frontend, because it can
hardly utilize the information of the program order which is
available in the frontend, and it is not pipelinable while it is
in the frontend.

Although the detection itself is essential for the out-
of-order issuing, the whole conventional wakeup operation
does not have to be performed in the window. The key to
reduce the complexity of the wakeup logic is to move heavy
parts of the dependence detection to the frontend. This pa-
per describes a way for it.

The rest of the paper is organized as follows: Section 2
describes the conventional dynamic instruction scheduling
scheme, and explains why the conventional logic is esti-
mated to be critical. Section 3 gives the detailed explanation
of our scheme. Then Section 4 and 5 show the quantitative
evaluation results. The related work is summarized in Sec-
tion 6.

2. Conventional scheme

The delays of almost all the components of a superscalar
processor except the execution units are given by increasing
functions of IW and WS. Examples of these components
are the instruction fetch logic, the register files, the caches
and the TLBs, the operand bypasses, and a part of the dy-
namic instruction scheduling logic, which is the main theme
of this paper. On the other hand, the delays of almost all the
execution units except the cache part of the load/store units
are independent of IW;WS.

Moreover, the delays of these components are more
strongly influenced by wire delays than those of the most
execution units. The wire delays will increasingly dominate
the total delay in advanced technologies.

Therefore the delays of these components will become
relatively long compared with those of the most execution
units, as IW;WS are increased and the feature sizes are re-
duced.

But the relative increase of the delays of these compo-
nents does not directly prevent the reduction of the cycle
time, because the delays a cycle can be drastically reduced
by pipelining and/or clustering [7, 9]. In other words, these
decentralization techniques are indispensable for future pro-
cessors of larger IW;WS and smaller feature sizes.

The pipelining, however, is not effective to a part of
the dynamic instruction scheduling logic. This section de-
scribes the reason in detail. First, Section 2.1 summarizes
the principle of the dynamic instruction scheduling. Next,
Section 2.2 describes the conventional scheduling scheme.
Section 2.3 and 2.4 show the logic circuits, then the pipelin-
ability of the logics is discussed in Section 2.5.

2.1. Principle of dynamic instruction scheduling

An out-of-order superscalar processor has the buffer to
temporally save the out-of-order results of the instructions,
namely the reorder buffer, or the physical register file. We
indistinctly refer to it as the out-of-order buffer or simply
the buffer. The dynamic instruction scheduling can be con-
sidered as local data-driven computation utilizing the buffer.
An instruction is allocated a free entry of the buffer, and
write the execution result to it. On the other hand, an in-
struction can start execution when the buffer entries corre-
sponding to all of its source operands have results written,
independent of the program order.

Logically, an entry of the issuing window has flags rdyL
and rdyR, which indicate whether the buffer entries corre-
sponding to the left and right source operands of the instruc-
tion saved into the window entry have the results written 1.

1We assume that the number of the source and destination operands are
two and one for simplicity. The discussion can be easily extended to the
cases of more operands.

The flags play important roles in the scheduling.
The flow of the dynamic instruction scheduling can be

divided into the following five phases, namely the rename,
dispatch, wakeup, select, and issue phases. The flow for
an instruction Ic is explained as follows, where the left and
right source operands of Ic is the result of a preceding in-
structions Ip(L) and Ip(R) respectively, and Ip(L) has fin-
ished while Ip(R) hasn’t:

1. Rename Ic is allocated a free entry of the buffer to write
the result, and finds the entries allocated to Ip(L=R).

2. Dispatch Ic is stored into the window, and the rdyL/R
of Ic are initialized. The buffer entry allocated to Ip(L)
has the result written, while that to Ip(R) doesn’t.
Thus the rdyL/R of Ic are initialized to 1/0. Ic sleeps
in the window waiting for the rdyR to be set.

3. Wakeup When the result of Ip(R) is being produced,
rdyR of Ic is set to 1 and Ic becomes ready.

4. Select Ic is selected from a maximum of WS ready in-
structions in the issuing window.

5. Issue Ic is read from the the issuing window, and sent to
an execution unit.

2.2. Scheduling and tag

The conventional scheme introduces a tag to realize
the wakeup operation described in the previous subsection.
Since the tag is an ID to uniquely identify each data which
simultaneously exist in the backend of a processor, any se-
rial number functions as the tag. But usually the designator
of the out-of-order buffer entry is used, because it has obvi-
ous one-to-one relationship with the result written into the
designated entry. In this case, the designator is used both to
designate an entry of the buffer and to wakeup the consumer
instructions. It is self-evident but should be noticed because
it is used in different pipeline stages.

The tags are assigned in the rename phase, and used in
the wakeup phase. The explanation of these phases in the
previous subsection is supplemented as follows:

1. Rename A free entry of the buffer is allocated to Ic to
write the result. We refer to the designator of the entry
as the tagD. In parallel with this, it find the tagDs
allocated to Ip(L) and Ip(R). We distinctively refer to
these tagDs as the tagL and the tagR.

3. Wakeup When an instruction is producing the result,
the corresponding rdyL/Rs are set based on associa-
tion of the tags. The instruction broadcasts its tagD to
all instructions in the issuing window. Then each of
them compares its tagL/R with the broadcasted tagD.
If there is a match, the corresponding rdyL/R is set.

2

In both of the rename and wakeup phases, dependences
between instructions are detected. In the rename phase,
Ic searches Ip(L=R) to obtain the tagL/R. In the wake-
up phase, Ip associatively searches Ic to update its rdyL/R.
From the following subsections, we explain how the con-
ventional scheme realizes these operations.

2.3. Rename logic

The rename operation is composed of allocation of
tagDs and resolution of tagL/Rs. Since a tagD to be al-
located can be decided in advance, for example in the pre-
vious cycle, the resolution of tagL/Rs is important for the
performance.

The resolution of tagL/R is realized by the register map
table. There are several ways to implement the table, we
take the RAM scheme for its simplicity [8]. The scheme
composes the table mainly of a RAM.

The RAM holds the current mapping from the logical
register numbers to the tags, i.e., it holds the tags indexed by
the register number. IW instructions being renamed write
allocated tagDs to the entry designated by their destina-
tion register numbers. They simultaneously read the tagL/
R from the entries designated by their left/right source reg-
ister numbers. Thus the RAM has IW write and 2 � IW

read ports.
When there exist dependences between instructions be-

ing renamed in parallel, the RAM provides old mappings
made in the previous cycle. A dependence detector, which
is an array of comparators, compares the register numbers
of the instructions. When it detects dependences, it re-
places the old tagL/Rs by the new tagDs being written to
the RAM.

Since the dependence detector is faster [8], the delay of
the rename logic is given by the read delay of the RAM.

2.4. Wakeup logic

Figure 1 shows the block diagram of the conventional
wakeup logic. The issuing window including the wake-
up logic, is usually implemented not as a centralized logic
shown in the figure, but as a set of decentralized logics. We
will explain such decentralization in Section 2.6.

The select logic shown in the right of the figure arbitrates
WS request signals, and asserts IW grant signals.

The wakeup logic is composed of a RAM-like and a
CAM-like parts. Though they are not exactly a RAM and a
CAM, we simply refer to them as the RAM and the CAM.

The RAM shown in the top saves tagDs. The read port
of the RAM does not have a row decoder, and the grant
signals from the select logic are connected to the read word-
lines through a pipeline register. The tagDs read from the
RAM are sent to the pipeline register shown in the top to be

tagR1

1

2

IW

tagR1

1

2

IW

rdyL/R1

requestWS

= ?

= ?

= ?

clock

request1

tagDWS

tagD1

S
elect L

o
g

ic

R
ea

d
 o

th
er

 f
ie

ld
s

 o
f

is
su

in
g
 w

in
d
o
w

grantWS,IW

grant1,IW

grant1,1

grantWS,1

12IW

Designate write address of buffer

tagL1

rdyL/RWS
= ?

= ?

= ?

tagLWS

tagR1

S Q

S Q

RAM

CAM

issue

selectwakeup

valid1

validWS

Figure 1. Conventional wakeup logic.

select issue RF

wakeup select issue RF

EXEC RF

EXEC RF

issue RF

wakeup select issue RF

EXEC RF

EXEC

Ip

Ic

Ip

Ic

clock

(a)

(b)

timeA2 B1 B2 C1 C2 D1 D2

RAM CAM

select

Figure 2. Phases and instruction pipeline.

used as the write addresses of the buffer, and to the com-
parison input ports of the CAM shown in the bottom. Thus
the read operation of tagDs from the RAM is included in
both of the issue and wakeup phases. The tagDs sent to the
pipeline register shown in the top are delayed appropriate
cycles before used as a write addresses of the buffer.

Then the CAM associatively searches the tagL/Rs which
match the tagDs sent from the RAM, and sets the corre-
sponding rdyL/Rs. The outputs of the rdyL/R registers are
ANDed to generate the request signal to the select logic.

Figure 2 shows the position of the wakeup, select, and
issue phases in the instruction pipeline. The figure fol-
lows the MIPS R10000 integer pipeline [12]. In this figure,

3

Exec indicates the execution stage, RF! and !RF indi-
cate read from and writeback to the physical register files
respectively. Figure 2-a represents the most critical case for
the wakeup and select phases, that is, one-cycle latency in-
struction Ip is followed by Ic in the consecutive cycle. The
result of Ip is sent to Ic through the operand bypass. The
behavior of the logics is summarized as follows:

A2 The select logic selects Ip, and asserts the grant signal.

B1 The issue operation for Ip and the wakeup for Ic pro-
ceed simultaneously. The tagD of Ip is read from the
RAM and sent to the CAM. The CAM sets the rdyL of
Ic, and Ic asserts the request signal to the select logic.

B2 This time the select logic selects Ic.

2.5. Pipelinability

Pipelinability of the instruction pipeline phases depends
on feedback loops, and the possibility or the effectiveness of
speculation. For example, all the five phases of the schedul-
ing are included in a feedback loop from the execution of
branch instructions back to the instruction fetch, but they
are pipelinable owing to the effectiveness of the branch pre-
diction. The cycles allocated to the phases only increase the
misprediction penalty.

The phases of the scheduling has another important feed-
back loop, which is from the select back to the wakeup
phases. The wakeup phase depends on the select phase, be-
cause the wakeup operation for Ic can start after the select
logic decides the issue of Ip.

This feedback loop practically prevents the pipelining of
the wakeup and select phases. Consider the case where one
cycle is allocated to each of the wakeup and select phases
as shown in Figure 2-b. As mentioned above, the wake-
up operation for Ic can start after the issue logic selects Ip.
Thus the wakeup and select phases for Ic proceed from B1

toB2 and fromC1 toC2 respectively. Although the result of
Ip has already been ready, Ic is not issued in the consecutive
cycle of Ip,

It is equivalent to removing the operand bypasses from
the one-cycle latency execution units, that is, the ALUs in
the usual cases. As we will show in Section 4, it degrades
the IPC about 15% at most, and it is unlikely to meet the
gain of the clock speed. Thus we can conclude that the
wakeup and select phases have to be executed in one cycle
for one-cycle latency paths.

2.6. Decentralization

As mentioned before, the issuing window is usually de-
centralized to a set of subwindows. This technique is quite
important, because it considerably reduces the delay of the

logics at the cost of small IPC penalties. The decentral-
ization reduces the effective size of each subwindow, and
enables latency optimization.

Effective size reduction The structure of the logic circuit
of a subwindow is basically the same as that of a centralized
window shown in Figure 1, except that IW;WS are reduced
to IW 0,WS0, where IW 0 andWS

0 are the issue width and
the size of the subwindow. When the window is divided into
s subwindows, IW 0,WS

0 are about 1=q of IW;WS respec-
tively.

Only the number of the comparison input ports of the
CAM can not be reduced from IW to IW 0 to receive tagDs
from the other subwindows. Although it is ideal that each
CAM has IW ports, actual processors usually reduced it at
the cost of IPC degradation.

Latency optimization As mentioned before, the wakeup
and select phases have to be executed in one cycle for one-
cycle latency paths. On the other hand, the phases for two
or more cycle latency paths are pipelinable. For example,
the issuing window of MIPS R10000 consists of three sub-
windows, namely the integer, load/store (LS), and floating-
point (FP) subwindows. There are two one-cycle latency
paths: from integer to integer, and from integer to LS. And
the others are pipelinable. Thus the integer subwindow is
the most critical among three subwindows, and the discus-
sion about the critical path can be concentrated to it.

Summary

As mentioned earlier, recent superscalar processors em-
ploy increasingly deeper pipelines. Since the wakeup and
select phases for one-cycle latency paths are not pipelina-
ble, they will become more critical with deeper pipelines.

The wakeup logic will be more critical between these
two phases. The delay of the select logic is composed
mainly of the intrinsic gate delays, and it will be reduced
steadily with the reduction of the feature sizes. On the other
hand, the delay of the wakeup logic is composed mainly of
the wire delays of the word, bit, and match lines of the RAM
and the CAM. Therefore, the wakeup logic will become
more critical with smaller feature sizes. The wakeup de-
lay has already been considerably critical even for as small
IW

0, WS
0 as recent processors, as we will show in Sec-

tion 5.2.

For these reasons, the wakeup logic is considered as one
of the main factors to restrict the clock speed of future pro-
cessors. The next section describes the scheme we propose,
which replaces the wakeup logic.

4

3. Proposed scheme

The out-of-order scheduling have to detect the depen-
dences between instructions twice: in the rename and wake-
up phases. A consumer instruction searches its producers
to obtain its tagL/R in the rename phase, while a producer
does its consumers to set their rdyL/Rs in the wakeup.

The logic of the wakeup phase, however, is considerably
more complex than that of the rename as seen in the previ-
ous section. The reason can be summarized as follows:

1. Associativity In the rename phase, a consumer searches
the only producer that produces each of its source
operands. While in the wakeup phase, a producer has
to search all the source operands of its consumers that
depend on it. Therefore the search in the wakeup phase
must be associative in principle.

2. Position in instruction pipeline The rename phase is
in the frontend of the pipeline, while the wakeup isn’t:

a. Pipelinability The rename phase is pipelinable,
while the wakeup isn’t.

b. Availability of program order Since instructions
pass the rename phase in the program order, the
target of search is restricted to the newest instruc-
tion that writes a logical register. Utilizing the
program order in the wakeup phase is not im-
possible, but not easy either. The conventional
scheme does not utilize it.

Although the associative search in the wakeup phase is
essential for the out-of-order issuing, the whole conven-
tional wakeup operation does not have to be performed in
the phase. The key to reduce the complexity of the wake-
up logic is to move heavy parts of the dependence detec-
tion required for the wakeup operation to the frontend of
the processor. In fact, the scheme we propose removes the
association from the wakeup phase in this way.

Our scheme uses matrices which hold the current depen-
dences between instructions in the issuing window. The up-
date logic of the matrices detects the dependences as the re-
name logic does in the frontend of the processor. Thus the
wakeup operation is realized by just reading the matrices.

3.1. Dependence matrices

Figure 3 shows the concept of the dependence matri-
ces. The dependence matrices are composed of the left and
right WS�WS matrices corresponding to the dependences
through the left and right source operands. The c-th row
and p-th column element of the left/right matrix is 1 if and
only if the left/right source operand of c-th instruction is the
result produced by the p-th instruction. In short, c-th row of

ld 20($sp)->$1

add $2,$3->$4

sla $1,1 ->$2

sla $1,2 ->$3

1:

3:

4:

2: 1

1

1

1 2 3 4 1 2 3 4

1

1

1

rdyL rdyR

1

1

Figure 3. Dependence matrices.

the left/right matrix is a bit-vector which indicates the pro-
ducer of the left/right source operand of the c-th instruction.

In Figure 3, a series of four instructions are stored in
the window from the first to fourth entries. Since the left
source operand of the second instruction is produced by the
first instruction, the first column element of the second row
of the left matrix is set to 1. The other elements can be
determined in this way.

In the wakeup phase, IW columns of issued instructions
are bitwise ORed on each of left/right matrix, and the re-
sulting column-vectors indicate rdyL/Rs to set. When the
first instruction is issued, the second and third rdyLs are set
by the first column of the left matrix, and the second and
third instructions become ready. If these two instructions
are issued simultaneously, the second and third columns are
bitwise ORed to set rdyL/R, and the fourth instruction be-
comes ready.

3.2. Implementation

Figure 4 shows the block diagram of our wakeup logic.
Compare it with the conventional one shown in Figure 1.
The matrices receive the grant signals from the select logic,
and produce the inputs of the rdyL/R registers, i.e., the
RAM and the CAM of the conventional logic are replaced
by the matrices.

Our scheme does not use a tag for the wakeup opera-
tion. If the tag is the designator of the out-of-order buffer,
our scheme as well as the conventional scheme reads tagDs
from the RAM to use them as the designators of the buffer 2.
The read operation of the tagDs, however, is included not in
the wakeup operation but only in the issue in our scheme, as
is directly shown in Figures 4. Note that the issue phase, un-
like the wakeup, is pipelinable as mentioned in Section 2.5.

Although a bitwise-OR of multiple columns is required
for the wakeup operation, no special logic is required for
it. The usual RAMs can be used to implement the matrices
with minor changes. We will explain the reason in Sec-
tion 3.4. Figure 5 shows the logic circuit of the cells for a
2 � 2 minor matrix of the left matrix. A 4T cell is put in
the middle of each cell, and the write ports for update are

2Since it is used only as the designator of the buffer, the term “tag” is
no longer appropriate for our scheme. But we use it for continuity.

5

rdyL/R

clock

requestWS

request2

request1

grantWS,i

grant1,i

grantWS,IW

grant1,IW

grant1,1

grantWS,1

Σi

tagDWS

tagD1

R
ea

d
 o

th
er

 f
ie

ld
s

 o
f

is
su

in
g
 w

in
d
o
w

RAM

issue

S
elect L

o
g
ic

Σi

S Q

S Q

S Q

Left/Right Matrices

selectwakeup

valid1

Figure 4. Proposed wakeup logic.

rdyLj

rdyLj+1

issuei issuei+1

biti+1biti+1biti biti

wordj

wordj+1

Figure 5. Logic of left matrix.

arranged on the both sides of the 4T cell. And A read port
for the wakeup operation is in the bottom of each cell.

Following subsections describe three operations on the
matrices: the update and wakeup operations, and status re-
covery from misprediction.

3.3. Update

Consider the case when Ic is being stored to the c-th entry
of the window, and its producer instructions Ip(L=R) has
been stored to the p(L=R)-th entry. The update operation
of the matrices can be divided into following two phases:
1. finding the producer designator p(L=R), and 2. writing
the decoded p(L=R) to the c-th row of each matrix. The
first and second phases proceed in parallel with the rename
and dispatch phases respectively.

The producer designator p(L=R) can be found in the
same way as tagL/R are found in the rename phase. The
explanation for the rename logic in Section 2.3 holds true
for this logic if ‘tagD/L/R’ and ‘register map table’ are re-
placed by ‘producer designator’ and ‘producer table’. The
producer table holds the mapping from the logical register
numbers not to the tags but to the producer designators.

The same dependence detector as the rename logic is
also required for this logic, and it can be shared between the
rename and this logics. Therefore it is mainly the producer
table that is required especially to update the matrices.

As mentioned above, the first and second phases proceed
in parallel with the rename and dispatch phases respectively.
Thus the delays of the phases can be compared with them
as follows:

1. Rename The out-of-order buffer is usually from one to
two times deeper than the instruction window. The tag
which designates the buffer entry is thus by zero to
one bit longer than the producer designator which des-
ignates the window entry. Therefore the register map
table which holds the tags is by zero to one bit wider
than the producer table which holds the producer des-
ignators. The other parameters of these tables are the
same. Therefore the delay of the producer table is less
than or equal to that of the register map table.

2. Dispatch The dispatch logic writes the instructions into
the RAM of the issuing window. The decoders for the
producer designator is functionally the same as the row
decoder of the RAM of the window. Thus the delay
of the second phase is almost the same as that of the
dispatch logic.

From the above qualitative discussion, we can conclude that
the delay to update the matrices is unlikely to lengthen the
critical path of the rename and dispatch phases.

3.4. Wakeup

The wakeup operation is performed by the read ports of
the circuit. As shown in Figure 5, the read port is basically
the same as the conventional 1-read RAM with single-ended
bitlines, except the following differences:

6

Structure The position of the word and bitlines of the read
port is opposite from that of the conventional RAM.
The wordlines issue run vertically, and the bitlines
rdyL/R run horizontally.

This is realized by locally reconnecting the input and
the output of the bitline driver of each cell. Thus it
imposes nearly no cost.

Behavior The conventional RAM asserts only one word-
line at a time, while each of the matrix asserts at most
IW wordlines. The wordlines issue for instructions
being issued are asserted in every cycle, and at most
IW cells are connected to one bitline. If there ex-
ists at least one cell set among them, it pulls down
the bitline. In short, asserting multiple wordlines of
the conventional RAM with single-ended bitlines gen-
erates bitwise-OR of the multiple columns.

In order to generate bitwise-OR, the read port of the ma-
trices can not be double-ended in principle, because assert-
ing multiple wordlines can pull down both of the comple-
mentary bitlines.

3.5. Status recovery from misprediction

Speculative execution is indispensable for recent proces-
sors. For instruction scheduling schemes it is important that
the status recovery from a misprediction is simple. In our
scheme, the producer table requires checkpointing just like
the register map table, while the matrices requires no special
operation just like the conventional wakeup logic.

In general, invalid window entries including ones inval-
idated due to mispredictions partially keep obsolete infor-
mation. Rows of the matrices keep obsolete elements set,
as entries of the conventional logic keep obsolete tagL/R.
They can produce false outputs.

It is enough to prevent the select logic from receiving
false request signals. This is usually realized not by the
tagL/R memories or the matrices but by glue logic around
the rdyL/R registers, because it is less costly. For example,
the circuits shown in Figure 1 and 4 use the valid flags of
the window entry to do so.

Thus the rows of the matrices as well as the tagL/R
memories can be left unchanged when invalidated due to
mispredictions.

3.6. Decentralization

This and the next sections describe two techniques to
speed up the accesses to the matrices, in particular the read
access for the wakeup operation. The first is decentral-
ization similar to that for the conventional scheme men-
tioned in Section 2.6, and the second is characteristic of our
scheme. Though the techniques can be applied separately,

Integer LS FP

In
te

g
e
r

L
S

F
P

rdyL(R)

WSq WSq WSq

WSq

WSq

WSq

Figure 6. Decentralization of matrix.

they are more effective if applied together. Thus this section
first describes the decentralization of the matrices, then the
next section describes the way to apply the technique to the
decentralized matrices.

When the instruction window is decentralized to s sub-
windows of which the issue widths and the sizes are IW 0

and WS
0, each matrix is segmented to s WS

0-row WS-
column partial matrix. For example, R10000 has subwin-
dows for the integer, LS, and FP instructions, and WS

0 of
each subwindow is 16. As shown in Figure 6, each matrix
is segmented to three 16-row 48-column partial matrices.

Nine WS
0
�WS

0 minor matrices in Figure 6 correspond
to the dependence between each two of the integer, LS, and
FP subwindows. The right top and left bottom minor ma-
trices are unnecessary for architectures which do not have
move instructions between the integer and FP registers like
SPARC. Even for architectures which have such instruc-
tions like MIPS, these minor matrices can also be omitted
by stalling the frontend until the instructions finish. In this
case, the rdyL/Rs of the consumer instructions are initial-
ized to 1 in the dispatch phase (see Section 2.1). Though
any of the minor matrices can also be omitted in this way, it
is not recommendable because the impact on the IPC would
possibly become too large.

Like the conventional scheme the decentralization of the
matrices reduces the effective size of the matrices and en-
ables latency optimization.

Effective size reduction The number of the write ports of
each segment is reduced from IW to IW 0. Thus the circuit
area is reduced, and the delays are shortened.

Latency optimization As mentioned before, only the
integer-to-integer and integer-to-LS paths have one-cycle
latency in the case of R10000, and the wakeup and select
operations for them have to be performed in one cycle. Thus
the read operation for the shadowed segments in Figure 6
has to be performed in one cycle with the select, while the
rest is pipelinable. We call the former segment L-1 matri-
ces, while the latter L-2 matrices.

7

The read operation of L-2 matrices can consume two or
more cycles with the select logic depending on the latency
of the paths. If 0.5 cycles are assigned to each of the read
operation of L-1 matrices and the select phase, the read of
L-2 matrices can consume at least 1.5 cycles, which is three
times longer than that of L-1 matrices. Therefore L-2 matri-
ces is unlikely to be critical, and can be excluded from the
discussion on the wakeup delay.

On the other hand, L-1 matrices is considerably smaller
than the original matrices, and the delay becomes shorter.
In addition, the technique described in the next subsection
can be applied for L-1 matrices.

3.7. Narrowing

The distances between two dependent instructions are
generally short. It is known that about 90% of them are less
than 32 instructions [5]. The effective size of the L-1 ma-
trices can be reduced utilizing this characteristics. Only the
bits for the preceding w (1 � w � WS

0
� 1) instructions

are remained in the L-1 matrices, and the other (WS
0
� w)

bits can be moved to the L-2.
The rdyL/R are updated by the reduced L-1 matrices

when the latency between two dependent instructions is one
and the distance between them is less than or equal to w,
otherwise the rdyL/R are updated by the L-2.

When the latency is one and the distance is greater than
w, a penalty of one cycle is charged. The update of the
rdyL/R are performed by L-2 matrices instead of L-1, and is
delayed by one cycle. Consequently Ic can not be issued in
the consecutive cycle of Ip. The impact, however, is enough
small, as shown in the next section.

Figure 7 shows the way to reduce the minor matrix of
WS

0 = 8 to w = 4. Though the figure shows only the
integer-to-integer minor matrix, it can be applied to the
integer-to-LS. The left of the figure represents the L-1 ma-
trix before reducing, and the right represents after. The cells
moved from L-1 matrices is drawn in gray lines in the left.
There are several ways to collect remained cells into a rect-
angular area, and the figure shows one to give priority to
reduce the length of the bitlines rdyL/R which are more crit-
ical. Now we can call w the width of L-1 matrices.

As shown in Figure 7, each of the wordlines issue and
bitline rdyL/R of the narrowed L-1 matrix are connected to
only w cells. Therefore the delay to read the L-1 matrices,
that is, the wakeup delay is given by a function of w inde-
pendent of WS or WS

0.

Pace keeping operation The narrowed L-1 matrices can
update rdyL/Rs when the distance between dependent in-
structions not in the instruction flow but in the window is
less than or equal to w. Therefore the distance in the win-
dow has to be consistent with that of the instruction flow to
a certain extent.

1

2

3

4

5

6

7

issue

w = 4WSq = 8

W
S

q =
 8

1

2

3

4

5

6

7

8 rdyL/R

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 8765

Figure 7. Narrowing L-1 matrix.

For instructions dispatched to the same subwindow, this
condition is easily satisfied by reusing the subwindow en-
tries cyclically. For instructions dispatched to different sub-
windows, however, extra control is required. The subwin-
dows concerned with the narrowing, that is, the integer and
LS subwindows in the case of R10000, have to keep pace
with each other; otherwise the tails of the integer and LS
subwindows are generally apart and dependent instructions
can be stored into distant entries.

The simplest algorithm to keep pace is as follows: when
two consecutive instructions are dispatched to the different
subwindows, the succeeding instruction should be written
into an entry on the side of or after the entry where the
preceding instruction is written.

The operation itself is simple, and it would not impact
the delay of the decode stage. Though the utilization of the
entries of the subwindows is inevitably degraded, it is small
as shown in the next section.

4. Evaluation of IPC

The rest of this paper gives quantitative evaluation re-
sults of our scheme compared with the conventional one.
The evaluation items are the IPC penalties caused by the
narrowing described in the previous section, and the areas
and the delays of the circuits. The former is shown in this
section, and the latter is in the next.

To evaluate the IPC, we modified the sim-outorder sim-
ulator in the SimpleScalar toolset [1].

We used MIPS R10000 as the base model with minor
modifications. R10000 has three instruction subwindows
for the integer, LS, FP instructions. The parameters are
(IW 0

; WS
0
; TW; IW) = (2; 16; 6; 4), where IW 0 and WS

0

are the issue width and size of each subwindow, and TW

is the width of tags (See Section 2.6). The size and the line
size are 32KB and 32B for the first instruction/data cache,
1MB and 64B for the unified second cache. The latency of
the first data cache is 1 cycle, the second is 6 cycles. On the
second cache miss, the latency for the critical word is 18
cycles, and another 2 cycles a word is required for the oth-

8

Program Input Set No. of Insts

099.go 9 9 132M
124.m88ksim dcrand.big 120M
126.gcc genrecog.i 122M
129.compress 10000 q 2131 35M
130.li train.lsp 183M
132.ijpeg vigo.ppm -GO 26M
134.perl primes.in 10M
147.vortex persons.250 157M

Table 1. Programs in SPEC CINT95.

ers. We used a branch predictor based on two-bit saturating
counters provided in the toolset (bimod).

We call this model R10K�1. In addition, we evalu-
ated two virtual models, namely R10K�2, and R10K�1.
R10K�2 has double computation resources except the
caches. Thus the parameters are (IW 0

; WS
0
; TW; IW) =

(4; 32; 7; 8). R10K�1 has infinite resources, and perfect
caches and a perfect branch predictor. R10K�1 and�2 are
also used for evaluation of the circuits in the next section.

We executed eight programs of SPEC CINT95 shown in
Table 1. We don’t show the result of CFP95. The critical
paths of the programs in CFP95 is mainly composed of the

R10K�1

85

90

99100

R10K�2

80

90

98
100

R10K�1

65

70

80

90

100

0 1 2 4 8 16 32 64 128

099.go
124.m88ksim

126.gcc
129.compress

130.li
132.ijpeg
134.perl

147.vortex

Figure 8. IPC ratios vs. L-1 matrices widths.

FP instructions of two or more cycle latencies. Thus the
narrowing has little impact on them.

The graphs in Figure 8 correspond to R10K�1, �2, and
�1 respectively. The x-axes are the widths of L-1 matri-
ces, and y-axes are the percentages of IPC to the conven-
tional scheme.

Note that the values of w = WS
0 are slightly less than

100% because of the pace keeping operation. Though the
operation is unnecessary when w = WS

0, we applied it to
evaluate the net influence of the operation.

The graphs for R10K�1 and�2 show the quarter widths
are enough to be comparable with conventional scheme. In
these cases, the IPC degradations are caused mainly by the
pace keeping operation, and are less than 1% for R10K�1,
2% for �2.

The cases of w = 0 are equivalent to that each of the
wakeup and select phases are assigned one cycle described
in Section 2.5. The IPC degradations reach about 15%.

The graph for R10K�1 indicates that there exists the
upper limit in the width. The L-1 matrices of widths 32
to 64 are enough even for an ideal processor with infinite
resources.

5. Evaluation of circuits

We used the CS80A design rule provided by Fujitsu Lim-
ited. CS80A is a bulk CMOS process of 0:18�m gate width.
The gate insulator and the inter-metal dielectric are SiO2.
The metal is six-layer aluminum, but we used only three.

Guided by the rule, we actually designed the layouts of
the chief circuits of the integer subwindow of the conven-
tional and our schemes, namely the RAM and the CAM of
the conventional scheme, the matrices, as well as the select
logic:

RAM The upper half of Figure 9 shows the logic circuit
of the cell of the tagD RAM. The RAM is IW 0-read IW 0-
write, TW b�WS

0 word. The figure is for IW 0 = 2, thus
the cell has two read and two write ports.

CAM The lower half of Figure 9 shows the logic circuit
of the CAM cell of the conventional scheme. The cell in the
figure is for a bit of tagL. The cell is composed of an array
of comparators shown in the top of the cell, and the RAM
cell to save a bit of tagL shown in the bottom.

The RAM cell is logically the same as the tagD RAM
cell described above.

We provide IW comparators for generality (see Sec-
tion 2.6). The figure is for IW = 4, IW 0 = 2, thus two
write ports and four comparators are provided.

We use a dynamic selector composed of a pair of nMOS
pass gates for the one-bit comparator. One of a paired pass
gates is ON depending on the state of the RAM cell. If the

9

pchg

match1

match2

match4

tagL1:2

pchg

4

write1

write2

tagL1:2

issue1

write1

write2

issue2

tagD1:2tagD1:2

2

3

1

5 4 6 7

rdyL

Figure 9. Conventional RAM and CAM cell.

input and the memorized value is different, one of the dif-
ferential input 4 connected to the ON gate becomes low,
and it discharges the node 5 . If any one of TW one-bit
comparators connected to a match line 7 detects the mis-
match, it pulls down the precharged match line. An OR gate
of IW match lines generates the final output for rdyL.

Matrices The logic circuit of the matrices has already
shown in Figure 5. The matrix cell is basically the same
as the tagD RAM cell described above with the following
exceptions:

� The wordlines of narrowed L-1 matrices run diago-
nally (see Section 3.7). In the layout, they run in the
stair shapes.

� The length of the word and bitlines are decided by the
widths of L-1 matrices w, independent of WS

0 or TW.

� The number of the read port is always one, indepen-
dent of IW 0.

Select logic We tried the prefix-sum scheme for the select
logic. A prefix sum is the sum of the requests of higher
priorities. We used fixed priority for simplicity. A cyclic-
priority scheme for cyclic reuse of the instruction window
entries is described in [6].

component R10K�1 R10K�2

RAM 22,053 78,819
CAM 35,529 214,560

2 4,673 11,502
4 9,354 23,003

Matrices
L-1 8 18,688 46,006

16 37,376 92,013
32 — 184,026

L-1+ L-2 168,372 828,108

Table 2. Circuit areas (�m2).

We measured the area of these circuits, extracted the RC
data from the layouts based on the process parameters, and
calculated the delays by the Hspice simulation.

5.1. Area

Table 2 shows the areas of circuits. As mentioned be-
fore, our scheme also requires the same tagD RAM as the
conventional scheme to use tagDs as the write addresses of
the out-of-order buffer. Thus the areas of the matrices could
be compared with that of the CAMs.

The L-1 matrices are as large as the CAMs, and they
become considerably smaller with the narrowing.

On the other hand, the L-2 matrices are about four times
as large as the CAMs, because the areas of them are propor-
tional to the square of WS. If larger WS causes problems,
we can choose the conventional CAM instead of the L-2
matrices.

The overall areas, however, are less than 1mm2 even for
R10K�2, and it is negligible compared with the die area.

5.2. Delay

Figure 10 shows the results of the Hspice simulation. In
this graph, the top six bars are for the delays of L-1 matrix,
the next two for the conventional RAM + CAM delays, and
the last two for the select logic. The marks 1 to 7 in
the graph correspond to those in Figure 9. The measure-
ment condition is typical: the supply voltage is 1.8V, and
the temperature is 85ÆC.

Without the narrowing, the widths of L-1 matrices for
R10K�1 and �2 are 16 and 32. Thus the bottom two bars
for L-1 matrices can be compared with two bars for the con-
ventional wakeup logic and two bars for the select logic re-
spectively. When the widths of L-1 matrices are reduced to
w, the bar for widths w can be compared.

Delay of L-1 matrices The delays of the L-1 matrices are
comparable with those of the tagD RAMs. The tagD RAM
is TW b � WS words, while the L-1 matrix without the
narrowing is almost equivalent to WS b�WS words. Thus
the delays of the L-1 matrices without the narrowing are
slightly longer than those of the tagD RAMs because of

10

time (ps)200 4000 600

185.2

 75.1

 65.0

 100.7

 149.0

 242.9

273.9

 429.4

2

4

8

16

32

 485.5

 678.2

 274.3

 346.8

2 3

4 5 6 7

1

x1

x2

1

C
o
n
v
en

tio
n
al

L
-1

 M
atrix

S
elect

x1

x2

Figure 10. Delay of circuits.

the difference in bit widths, in other words, the loads of the
wordlines.

The matrices are optimized for the width of 4 to 8, and
there is relatively large room to optimize for the width of 16
to 32.

Issuing delay For R10K�1, our scheme reduces the
wakeup+select delay to 68.0% of the conventional one, and
the clock frequency limited by the delay is 1.93GHz. Thus
the issuing delay would not limit the clock frequency, and
the narrowing would be unnecessary.

For R10K�2, our scheme reduces the wakeup+select
delay to 75.7% of the conventional one, and the clock fre-
quency limit is 1.29GHz. When the widths of L-1 matri-
ces are reduced to eight, the clock frequency limit reaches
2.02GHz, and the issuing delay would not be critical. The
IPC degradation of the configuration is about 2% (see Sec-
tion 4).

Wire delays The hatched segments of the bars are com-
posed mainly of the intrinsic gate delays, while the others
are subject to the wire delays.

The graph shows that the proportion of the latter is con-
siderably high in the conventional wakeup logic. It indicates
that the delay of it is hard to be scaled.

On the other hand, though the bars for the matrix are not
hatched, the wire delays does not directly influence the de-
lay of the matrices. As the width of the matrices are re-
duced, the word and bitlines are considerably shortened,
and the influence of the wire delays are decreased. The in-
fluence is nearly zero for the width of one to two.

6. Related work

Dependence-based window Palacharla et al. proposed
the dependence-based window [9]. This scheme decentral-
ize the window into small FIFO queues each of which corre-
sponds to a cluster of the execution units. Since dependent
instructions are dispatched into the same queue, the target
of wakeup for the one-cycle latency path can be restricted
to the top of each queue. In addition, the scheme removes
the select logic.

The potential problem of this method exists in the distri-
bution of instructions among FIFO queues. The instructions
are distributed based on heuristics, and the IPC is subject to
its preciseness. Although several heuritstics are proposed
[9, 4, 3], their IPC are relatively low. Complex heuristics
could prolong the delay of the distribution stage and de-
grade the total performance.

The clustering of the execution units reduces the delay
of the operand bypass logic, which is another main factor to
limit the clock speed, is also indispnsable for future super-
scalar processors. The execution unit clustering, however,
does not directly mean such clustring of the issuing win-
dow. The execution unit clustering could be combined with
our scheme.

First-use and distance schemes Canal and González
proposed the first-use and distance schemes [2]. And S.
Weiss and J. E. Smith proposed a similar issue logic to the
first-use scheme [11]. These schemes restrict the targets of
the associative search required for the conventional wakeup
operation at the cost of IPC penalties. The first-use scheme
is based on the fact that most results are read once, while the
distance scheme that the time when a result becomes ready
can be determined from the latencies of the execution units
and the starting time.

These schemes can also be combined with the clustering
of the exececution units.

The IPC degradation of these schemes, however, are rel-
atively high. The degradation is about �20% without any
association, and an associative buffer of 16 entries is re-
quired for the IPC almost equal to the conventional scheme.

Though the results can not be directly compared, it could
provide useful information that the matrices are faster than
the conventional wakeup logic of 16 entries even without
the narrowing, that is, for no IPC degradation.

CSP circuits Henry et al. widely applied a circuit to gen-
erate a cyclic segmented prefix (CSP) to the several com-
ponents of the scheduling logic including the wakeup logic
[6]. Their wakeup circuit is compose of CSP circuits for
each logical register and a pairs of NR-input selectors for
each window entry, where NR is the number of logical reg-
isters. The CSP circuit for a register generates whether the
newest instruction that writes the register has finished in

11

O(logWS) time. Then the pair of selectors of a window
entry selects outputs of the CSP circuits corresponding to
the source registers of the instruction in O(logNR) time.

The CSP circuit is useful for the logis other than wake-
up, especially for the select logic. But the application to the
wakeup logic is not reasonable. For the CSP circuits to find
the newest instruction, the program order have to be kept in
the issuing window. Although this is another way to utilize
the program order, it prohibits the decentralization of the
issuing window.

EDF window Sato and Arita proposed a similar scheme
to ours [10]. Their scheme also removes the association
form the wakeup operation. Their scheme detects the de-
pendence between instructions in the frontend of a proces-
sor like out scheme, while it saves the result of the detec-
tion not in the form of the matrices but of pointers to the
consumer instructions. Their wakeup logic is composed of
a RAM which holds the pointers and decoders for the point-
ers. Thus the main effect of the scheme is that the compara-
tor array of the CAM of the conventional wakeup logic is
replaced by the decoders.

However, the restriction over the number of the point-
ers causes severe tradeoff between IPC and the hardware
complexity. In particular, the status recovery from mispre-
dictions is complex.

The difference between their and our schemes comes
from that the write to the matrices is performed to the row
while the read is to the column. Owing to this feature, the
row of the matrices as the entry of the issuing window can
hold not a limited number of pointers to the consumers but
the bit-vector to the only producer.

7. Conclusions

This paper describes a new dynamic instruction schedul-
ing scheme for superscalar processors, not based on the as-
sociation of the tags but on matrices which represent the
dependence between instructions. Since the update logic of
the matrices detects the dependences as the register renam-
ing logic does in the frontend of a processor, the wakeup
operation is realized by just reading the matrices.

We designed the layouts of the logics guided by the de-
sign rules of a CMOS process with 0:18�m gate width
provided by Fujitsu Limited, and evaluated the delays by
Hspice simulation.

Our scheme reduces the issuing delay of a processor of
the MIPS R10000 configuration to 68.0% of that of the
conventional one, and achives the clock frequency limit of
1.93GHz. It is unlikely that the scheduling logics form the
critical path.

In addition, this paper also describes a technique called
narrowing. The narrowing reduces the effective size of the

matrices for small IPC penalties. The simulation results
show that the IPC degradation is only 1 to 2% with the ma-
trices of the quarter widths. The narrowing achieves the
clock frequency limit of 2.0GHz for a virtual 12-issue pro-
cessor.

Acknowledgment

I wold like to thank Fujitsu Limited for providing the
design rules of the CMOS process.

This research was partially supported by the Ministry
of Education, Science, Sports and Culture, Grant-in-Aid
for Scientific Research (B)(2) #12480072, #12558027, and
#13480083.

References

[1] D. Burger, T. M. Austin, and S. Bennett. Evaluating future
microprocessors: The SimpleScalar toolset. Technical Re-
port CS-TR-1308, Univ. of Wisconsin-Madison, Jul 1996.

[2] R. Canal and A. González. A low-complexity issue logic. In
Proc. 14th Int’l Conf. on Supercomputing, pages 327–335,
2000.

[3] R. Canal, J. M. Parcerisa, and A. González. Dynamic cluster
assignment mechanisms. In Proc. 6th Int’l Symp. on High-
Performance Computer Architecture (HPCA6), 2000.

[4] K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic. The
Multicluster architecture: reducing cycle time through par-
titioning. In Proc. 30th Int’l Symp. on Microarchitecture,
1997.

[5] M. Goshima, H. Nguyen, S. Mori, and S. Tomita. Dual-
Flow: A hybrid processor architecture between control- and
data-driven. IPSJ SIG Notes 98–ARC–130 (SWoPP ’98),
pages 115–120, Aug 1998. (in Japanese).

[6] D. S. Henry, B. C. Kuszmaul, G. H. Loh, and R. Sami. Cir-
cuits for wide-window superscalar processors. In Proc. 27th
Int’l Symp. on Computer Architecture (ISCA27), 2000.

[7] J. Keller. The 21264: A superscalar alpha processor with
out-of-order execution. In Proc. 9th Annual Microprocessor
Forum, Oct 1996.

[8] S. Palacharla, N. P. Jouppi, and J. E. Smith. Quantifying
the complexity of superscalar processors. Technical report,
Univ. of Wisconsin-Madison, Nov 1996.

[9] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-
effective superscalar processors. In Proc. 24th Int’l Symp.
on Computer Architecture (ISCA24), Jun 1997.

[10] T. Sato and I. Arita. Simplifying wakeup logic in su-
perrscalar processors. In Joint Symp. on Parallel Processing
2001, pages 23–30, Jun 2001. (in Japanese).

[11] S. Weiss and J. E. Smith. Instruction issue logic in pipelined
supercomputers. IEEE Trans. Comput., C-33(11):1013–
1022, Nov 1984.

[12] K. C. Yeager. The MIPS R10000 superscalar microproces-
sor. IEEE Micro, (4):28–40, Apr 1996.

12

