To appear ISPAN’94

Overview of the JUMP-1, an MPP Prototype for
General-Purpose Parallel Computations

Kei Hiraki*!, Hideharu Amano*?, Morihiro Kuga*®, Toshinori Sueyoshi*®
Tomohiro Kudoh**, Hiroshi Nakashima*®, Hironori Nakajo*®
Hideo Matsuda*®, Takashi Matsumoto*', Shin-ichiro Mori*®

*1 The University of Tokyo, *? Keio University,
*3 Kyushu Institute of Technology, ** Tokyo Engineering University,
*5 Kyoto University, *¢ Kobe University

We describe the basic architecture of JUMP-1, an MPP prototype developed
by collaboration between 7 universities. The proposed architecture can exploit
high performance of coarse-grained RISC' processor performance in connection
with flexible fine-grained operation such as distributed shared memory, versatile
synchronization and message communications.

1 Introduction

Recent progress in semiconductor technology enables practical use of MPP systems in
numerical intensive computations. However, current MPPs are still very inefficient for
general-purpose computations. Qur main goal is to construct a truly general-purpose mas-
sively parallel processor that covers application fields not only for vector super-computers
but also for main-frames and workstations. Potential application fields for our MPP system
include:

Numerical intensive computations,
Graphics, scientific visualization and animation.
Pattern recognition and robotics,

Databases and OLTP, and
Discrete problems.

Almost all the current commercial highly parallel processing systems are based on dis-
tributed memory architecture and use message passing as an only method to communicate
between processing elements. MPP systems with shared memory architecture have various
advantages over those with distributed memory architecture as follows:

1. Shared memory architecture allows natural description of problems including natural
description of parallelism and synchronization.

2. Recent optimizing techniques for parallel processing require prefetching, thread-
migration and remote-caching. Optimized compilers potentially have more opportu-
nity to improve performance in shared memory systems than in distributed memory
systems.

3. Shared memory systems allow more flexible operating environments such as data /
process migration, dynamic change in partitioning and dynamic load distribution.

4. Shared memory system provides more efficient and more powerful protection mecha-
nism based on memory access protection for remote accesses and messages.

Currently, three different shared memory architectures are proposed: centralized shared
memory systems, bus-connected snooping memory systems and distributed shared memory
systems. The former two organizations are not scalable and excluded for MPP systems.

Locality in memory references are required in distributed shared memory organization
for efficient computation. But an application program which does not have any locality in
memory references is also not suitable for MPP systems of any kinds. Therefore, we can
adopt this limitation for practical computations. Furthermore, a shared memory system
has advantage in process and/or data migration capability which can exploit dynamic
locality that cannot be utilized in distributed memory systems.

The next issue is selection of proper protocols. Almost all the current shared memory
systems use either invalidate or update protocol for consistency preserving operations.
However, both protocols have their own advantages and disadvantages and one protocol
cannot solve all the situations in application programs. The update protocol is essential to
accomplish inter-cache communication but that also has false-sharing problem. We have
proposed a new coherent protocol that dynamically switch appropriate protocols [1, 2].

The structure of directory which holds sharing information is important to reduce net-
work traffic for coherent memory operations. We have proposed a pseudo-fullmap directory
method [9] that dynamically switch between a hierarchical fullmap directory method, a
point-to point directory method and an ordinary fullmap directory method.

The main objective of above two methods are to provide flexible interface to compil-
ers and operating systems for optimizing system performance. Although we can keep the
length of threads in application programs fairly long by fusing a number of threads nec-
essary for optimizing communication, above mentioned methods requires programmable
memory management operations whose thread length is very short. For example, a global
read operation may requires access to the page table (or TLB) and sending remote-read
request, a global write operation requires sending remote-write request, sending invalidate
or update requests and possibly change the contents of directory and participate memory
barrier synchronization.

Thus, a processing element(s) in a node executes both long threads (application) and
very short threads (memory operation in globally shared locations). A single processor ar-
chitecture cannot efficiently executes programs that is abundant in globally shared memory
operations. We have proposed a complementary processor architecture (CPA) for efficient
execution of both coarse-grained local computations and fine-grained global computations.

2 Efficient distributed shared memory architecture

As stated in the previous section, realization of efficient distributed shared memory (DSM)
system is one of the most important issues for constructing a general-purpose MPP sys-
tem. The basic components for a distributed shared memory are organization of cache
memory, organization of cache directories, address translation mechanism and consistency
preserving operations [5, 3, 4, 6]. But distributed shared memory systems so far is less
efficient than distributed memory systems made of the corresponding hardware technology.
Consequently, it is still used only as a testbed of research works. We have proposed a new
distributed shared memory system, Strategic Memory System (SMS) for improving per-
formance of a distributed shared memory system and construct a general-purpose shared
memory MPP system. Main features of SMS are as follows:

e Globally shared virtual address space and two-stage TLB implementation.

e Directory attached to every page but data transfers by a cache block.

e Pseudo-fullmap directory cache memory based on a hierarchical broadcasting net-
work.

e Dynamic consistency protocol that can be optimized by the access pattern of an
application program.

e Caching directory information to TLB for accelerating consistency preserving opera-
tions.

¢ Integrate synchronization and consistency preserving operations for reducing network
traffic and instruction overheads.

Detailed description of SMS is shown in [12].

3 JUMP-1 architecture

JUMP-1 [8] adopts clustered architecture (figure 1) as a basic architecture. Clustered
architecture has several good properties for massively parallel systems because (1) clustered
architecture reduces the cost of an interconnection network for typical numerical intensive
applications, (2) it improves utilization of the interconnection network, (3) it allows more
efficient memory consistency protocols and synchronization protocols and (4) it matches
current physical implementation technology. For optimizing compilers and application
programmers, clustered architecture has additional benefits. Since local processors are
more tightly coupled than non-clustered system, optimizing compilers can exploit short-
range parallelism in application programs.

As shown in figure 1 JUMP-1 consists of 256 processor clusters and three different net-
works. The first network is Recursive Diagonal Torus network for interconnecting processor
clusters as described in the later section. The second network is an I/O network for disks
and high-definition video devices. The I/O network is a point to point high-speed serial
link with flexible I/O controlers which dynamically change the assignment of I/O devices
to clusters. The third network is a maintenance network for booting, instrumentation and
debugging, which is a tree-structured SCSI buses.

Figure 2 shows the block-diagram of a cluster. A cluster consists of 4 coarse-grained
processors (CPU), 2 fine-grained processors that is directly connected to a main memory
(Memory-Based Processor, or MBP), 4 secondary caches (L2 cache) that interface between
a CPU and an MBP, two network interface processors (NIPs), a network router, an I/0
network interface and a common bus. A CPU is a off the shelf RISC processor (SUN Super-
Sparc) for the main part of the application programs because current RISC shows the best
performance in sequential computations with locality in memory references by introducing
large amount of processor contexts (registers and system resources). The characteristics
of an MBP is to complement a CPU for short thread fined-grained computations with
frequent context switches [11]. Since there are no commercial fine-grained MPU, the MBP
is a custom design processor with associated support hardware as described later. A L2

[RDT Network J
I I I | |
Lo
2 = s <
D D D =5
I I 2 (OO g
S S S S

Extended
Lin’l/'
170 /O 1/O
FB FB | @ | FB BOX Box | @ | Box
o 1 7 o i 15
Ll I | |

FB : (Distributed) Frame Buffer

I/O0 BOX : SPARCSstation 5

Figure 1: Global architecture of JUMP-1

RDT Network

Figure 2: Block diagram of a cluster

Figure 3: Cached |-structure

cache memory is a secondary cache memory from CPU and the target of cache injection
[7] with synchronization functions. Therefore, a CPU and an MBP form a decoupled ar-
chitecture for global memory access operations. A main memory, also called 1.3 cache, has
synchronization tags on each word for implementing I-structures [10], FIFO queues and
other memory-based synchronization primitives.

A NIP is an interface processor to RDT network, which generates network routing in-
formation, assembles packets with error check code. A router is a node of RDT network
with elastic barrier hardware[13]. An I/O network interface is a high-speed serial trans-
mitter/receiver (TAXT) with message buffers.

3.1 Secondary Cache

The secondary cache is 1 M-byte, direct mapping, write-back, unified, snoop cache. It
has sophisticated mechanisms not only for multi-cache coherence control, but also for
interprocessor communication and synchronization.

The secondary cache supports both of two major coherence control protocols, write-
invalidate and write-update. Programmers, compilers and/or operating system can specify
one of these protocols as a page attribute according to the usage of data in the page. The
attribute is cached as a part of cache tag.

Each line of the secondary cache has one of the following five states for multi-cache
coherence control.

e invalid o locally-shared, clean
e exclusive, dirty e locally-shared, dirty
e globally-shared, clean

The states with locally-shared mean that copies of the line are only in a cluster, while a
globally-shared line may be shared by two or more clusters. This distinction will reduce
the load of MBP, because it can ignore a write for a locally-shared line and may not
acknowledge the write with a bus transaction. As described in the following section, MBP
provides various operations for interprocessor communication and synchronization. The

performance of these operations, however, would be limited because of the distance from
a processor to MBP. Therefore, we introduced caching mechanisms for two important
schemes, I-structure and FIFO, in order to reduce access latency of them[14].

Each word in the secondary cache has a full/empty bit to indicate the presence of a valid
data. Since the processor doesn’t has such an additional bit, a special command, specified
in a part of physical address, is available to load the bit as a data. Moreover, another load
command performs a predefined action if the word is empty, while it obtains the valid data
in the full case. The action for the empty case, specified as a page attribute, is loading a
special data pattern or raising an interrupt synchronous to the load operation. As shown
in Figure 3, the response data of ordinary and special load operations are cached in the
primary data cache to minimize the latency.

3.2 Memory-Based Processor

Memory-Based Processor (MBP) is a fine-grained processing element for global operations
that include management of memory consistency, memory based synchronization, message
handling and user-level fine-grain operations. An MBP is connected to L.2 cache memory
through a common bus, an RDT router through a network interface processor and I/0
links. In this section, the function and the construction of the MBP are outlined. Detailed
description of the MBP is found in [12].

An MBP has following functions to complement coarse-grained CPU:

Strategic Memory System Address translation, protection, data transfer and snooping
operation to L2 cache memory, memory consistency preservation among clusters by
a pseudo-fullmap directory scheme and accesses to remote memories are included in
strategic memory system management [12]. The consistency protocol based on the
pseudo-full map directory utilizes the hierarchical construction of the interconnection
network for reducing update/invalidate requests on the interconnection network and
for reducing the length of the entry of the directory.

Memory based synchronization Memory based synchronization is the mechanism to
implement I-structures [10], FIFO queues, memory barriers and Fetch and OP prim-
itives on each memory location. In JUMP-1, both L2 cache memories and main
storages have a synchronization tag on each memory location and implement mem-
ory based synchronization.

Elastic barrier Although the name space of memory based barriers is virtual memory
address space, the name space of the elastic barrier is the processor space because
elastic barrier is supported by hardware. Since the number of processors in JUMP-1
is too large for flat implementation of the barrier, elastic barrier is realized through
RDT network, in which barrier operations are combined at higher levels in RDT
network. MBP interfaces barrier requests from CPUs to RDT network router and
manages partitioning of elastic barriers.

Cache injection Cache injection facility is a cache mechanism to inject data without a
demand from a CPU request. Cache injection is further divided into deterministic
cache injection triggered by allread / allwrite cache protocols and speculative cache
injection that is initiated by an MBP for realizing data-driven operation. In both
cases, the target of cache injection is a block already on the cache or an empty block.
The combination of cache injection facility and memory based synchronization can
reduce network traffic related to processor communications.

Thread management Since locality is the key to archive high performance on coarse-
grained processing elements, a sophisticated thread management that cannot be re-

alized by a simple hardware context queue is indispensable. JUMP-1 uses memory
based FIFO queues as context queues that is managed by an MBP.

Execution of user-level programs Other than basic primitives motioned above, an
user can run his fine-grain programs on MBP. Garbage-collection, transaction pro-
cessing are examples of user-defined fine-grain programs. Programs are stored in a
main memory and all the working spaces are also reserved in a main memory.

Among MBP functions listed above, those which are frequently used and have large in-
fluence on performance are implemented in MBP hardware function-blocks and other
functions are realized by MBP-core programs. The following functions are selected for
implementing by MBP hardware function-blocks:

e Shared bus interface
e Address translation

o Consistency between clusters

e Basic memory based synchronization
¢ Basic primitives for I/O links

3.3 Interconnection Network: RDT

Recursive Diagonal Torus RDT(n,R,m) is a class of networks in which each node has
links to form base (rank-0) torus and m upper toruses (the maximum rank is R) with the
cardinal number n (here, n = 2). Note that, each node can select different rank of upper
toruses from others.

The RDT in which every node has links to form all possible upper toruses (RDT(n,R,R))
is called the perfect RDT (PRDT(n,R)) where n is the cardinal number (here, n=2) and
R is the maximum rank. Although the PRDT is unrealistic because of its large degree
(4(R+ 1)), it is important as a basis for establishing routing algorithm, broadcasting, and
other message transfer algorithms on the RDT.

The JUMP1 must be scalable to the system with ten thousand nodes (for example, array
of 128 x 128 nodes or 256 X 256 nodes). In this case, m is set to be 1 (degree = 8). For
this number of nodes, the maximum rank of upper toruses is 4. Thus, the RDT(2,4,1) is
treated here.

In the RDT, each node can select different rank toruses from others. Thus, the structure
of the RDT(2,4,1) also varies with the rank of toruses which are assigned to each node.
This assignment is called the torus assignment. Various torus assignment strategies can
be selected considering the traffic of the network. If the local traffic is large, the number
of nodes which have low ranks should be increased. However, complicated torus assign-
ment introduces difficulty to the message routing algorithm and implementation. For the
JUMP1, we selected a a relatively simple torus assignment shown in Figure 4. The RDT
provides the following features for the JUMP-1.

e A simple routing algorithm called the vector routing, which is near optimal and easy
to be implemented, enables smaller diameter than that of the hypercube (11 for 216
nodes) with smaller degree (8 links per node).

e Using its inherent hierarchical structure in upper toruses, the distributed multicast
required for the hierarchical full-map directory can be efficiently implemented. Trees
and the hypercube connection are easily emulated. The FFT and the bitonic sorting
algorithms are also easy to implement.

¢ With the best use of the redundant structure, fault tolerant techniques can be easily

applied on the RDT.
Precise definitions and discussions on the RDT are described in [15][16].

@ rank-1
O rank-1
Orank-2
O rank-2
@ rank-3
Q@ rank-3
@rank-4
©rank-4

Sh W N R O

Rank 1 Torus
(Example) Rank 2 Torus
(Example)

Figure 4: Torus assignment used in JUMP-1

3.4 I/0O System

The I/0O system consists of image 1/O and file I/O subsystems. The image I/O subsystem
supports high quality image processing for scientific visualization. The file I/O subsystem
provides a large amount of non-volatile data storage.

We took an approach based on not a single centralized 1/O channel but a number
of distributed I/O links (STAFF link [17]. Each link is composed of high speed serial
communication LSI and FIFO as described below.

Since only connecting via fast serial communication links between an I/O interface and
clusters cannot achieve a high performance 1/O system, an efficient communication orga-
nization among them has to be implemented. Thus, we propose a STAFF link mechanism
for an efficient I/O communication organization as described below.

A communication block consists of fast serial communication LSI (AMD TAXI) chip sets
for transmitting and receiving, Send- and Receive-FIFOs and a communication controller
which controls asynchronous communication by using a simple Xon/Xoff protocol. By
connecting two communication blocks via a twisted pair or coaxial cable, a bi-directional
first-in first-out facility is constructed between them. Combining some STAFF link imple-
ments I/O subsystem which holds wide range I/O bandwidth and is flexible for I/O cable
length.

4 Concluding Remarks

In this paper, we discuss the importance of flexible distributed shared memory in a MPP
system for general-purpose computations. The main features of JUMP-1 memory system
are:

1. Flexible consistency-protocol which dynamically switch protocols.

2. 2 level consistency protocol: snoopy cache within a cluster and the directory based
method among clusters.

3. Pseudo-fullmap directory method that combines a hierarchical fullmap method.

4. Efficient synchronization protocols that is based on the fusion of consistent protocol
and synchronizing structure.

5. Powerful and flexible realization of sharing and protection by three level addressing

and three TLBs.
6. Efficiently implemented by fine-grained Memory-Based Processor.

Currently, JUMP-1 is under construction and will complete in the next year.

Acknowledgments

We would like to express our thanks to Prof. H. Tanaka, Prof. S. Tomita, Prof. Y. Kaneda,
and all research members of the JUMPP project for their support.

A part of this research was supported by the Grant-in-Aid for Scientific Research on
Priority Areas, #04235103, from the Ministry of Education, Science and Culture.

References

(1]

[9]
[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

Matsumoto, T., “Fine-Grain Support Mechanisms”, IPS Japan SIG Reports, Vol.89 No.60, ARC-77-
12, pp.91-98 1989 (In Japanese).

Matsumoto, T. et al., “MISC: A Mechanism for Integrated Synchronization and Communication Using
Snoop Caches”, Proc. of the 1991 Int. Conf. on Parallel Processing, Vol. 1, pp.161-170 1991.

Agarwal, A, et al., “An Evaluation of Directory Schemes for Cache Coherence”, Proc. 15th Int. Symp.
on Computer Architecture, pp.280-289 1988.

Chaiken, D. et al.,” Directory-Based Cache Coherence in Large-Scale Multiprocessors”, IEEE Com-
puter, Vol.23 No.6, pp.49-58 1990.

Li, K.,” IVY: A Shared Virtual Memory System for Parallel Computing”, Proc. 1988 Int. Conf. on
Parallel Processing, St. Charls, IL, pp.94-101 1988.

Warren, D.H.D. and Haridi, S., “Data Diffusion Machine-a scalable shared virtual memory multipro-
cessor”, Int. Conf. on Fifth Generation Computer Systems 1988, ICOT 1988.

Matsumoto, T. and Hiraki, K., “Cache Injection and High-Performance Memory-Based Synchroniza-
tion Mechanisms”, IPS Japan SIG Reports, Vol.93 No.71, ARC-101-15, pp.113-120 1993 (In Japanese).

Hiraki, K., Amano, H., Kuga, M., Sueyoshi, T., Kudoh, T., Nakashima, H., Nakajo, H., Matsuda, H.,
Matsumoto, T. and Mori, S., “Overview of a Massively Parallel Computer Prototype: JUMP-1”, TIPS
Japan SIG Reports, ARC-102-10, pp.73-84 1993.

Matsumoto, T. and Hiraki, K., “A Shared-Memory Architecture for Massively Parallel Computer
Systems”, IEICE Japan SIG Reports, Vol.92 No.173, CPSY 92-26, pp.47-55 1992 (In Japanese).

Arvind and R. A. lannucci, “A Critique of Multiprocessing von Neumann Style”, Proc. 10th Int.
Symp. on Computer Architecture, pp.426-436 1983.

Matsumoto, T., “A Multiprocessor System with Memory-Based Processors and Register-Based Pro-
cessors”, Proc. of 43th Annual Convention of IPS Japan, Vol.6, 6Q-3, pp.115-116, 1991 (In Japanese).

Matsumoto, T. and Hiraki, K., “Distributed Shared-Memory Architecture Using Memory-Based Pro-
cessors”, Proc. of Joint Symp. on Parallel Processing *93, IPSJ/IEICE/JSSST, pp.245-252, 1993 (In
Japanese).

Matsumoto, T.,”Elastic Barrier: A Generalized Barrier-Type Synchronization Mechanism”, (in
Japanese). Trans. of IPS Japan, Vol.32 No.7, pp.886—896 (July 1991).

M. Goshima, C. Okada, T. Hosmoi, S. Mori, H. Nakashima and S. Tomita. The Intelligent Cache
System for Fine-Grain Inter-Processor Communication. IPSJ SIG Notes, Vol. 93, No. 71, 93-ARC-101,
pp- 121-128, 1993. (in Japanese)

Y. Yang, H. Amano, H. Shibamura and T. Sueyoshi. Recursive Diagonal Torus: An interconnec-
tion network for massively parallel computers. Prof. of the 5th IEEE Symposium on Parallel and
Distributed Processing, 1993.

Y. Yang, H. Amano, H. Shibamura and T. Sueyoshi. Characteristics of the Recursive Diagonal Torus:
an Interconnection Network for Massively Parallel Computers. IEICE Techinical Reports, CPSY93-26,
Aug. 1993. (in Japanese)

Okada, T., Nakajo, H., Matsumoto, T., Kohata, M., Matsuda, H., Hiraki, K. and Kaneda, Y., “An /O
Access Method for the Massively Parallel Computer JUMP-1”, TIPS Japan SIG Reports, ARC-107-23,
pp.177-184 1994.

