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Abstract
A parallel volume rendering system for unstructured

grid volume data is proposed in this paper. By imple-
menting the mechanism for dynamic load balancing into
the system, the authors solve the issue of load imbal-
ance due to the view dependency and run-time features
of early ray termination. An experimental implemen-
tation of the system achieved a 4.32-times performance
improvement.
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1 Introduction

PC-cluster based large-scale simulation has been
rapidly increasing in popularity. We have noticed
the strong demand for simultaneous visualization
of large-scale simulation results on a PC cluster.
Indeed, we have already been doing research on
hardware acceleration techniques for structured-
grid volume rendering[1, 2]. Now, we are going to
tackle unstructured grid volume rendering for si-
multaneous visulaization of large-scale simulation
results on a PC cluster. The volume rendering of
unstructured-grid volume data can be implemented
by direct volume rendering or indirect volume ren-
dering algorithms.

The indirect volume rendering algorithm con-
verts the unstructured grid volume data into struc-
tured grid volume data and then performs direct
volume rendering with this structured grid volume
data. Due to the regularity of the converted vol-
ume data, this direct volume rendering can benefit

from hardware acceleration. On the other hand,
however, it may suffer an unacceptable increase of
data size in general.

Direct volume rendering algorithms can be clas-
sified into either ray-casting or projection meth-
ods. Projection methods may be further cat-
egorized as cell-projected[3], slice-projected, or
vortex-projected schemes[4]. In this paper, we
have focused on the cell-projection scheme, and
we discuss its parallel implementation and dynamic
load balancing.

This paper is organized as follows. The next
section introduces cell-projection volume render-
ing and its parallel implementation. Then, dynamic
load balancing for cell-projection parallel volume
rendering is discussed in Section 3. Section 4
shows some experimental results, followed by the
conclusion in Section 5.

2 Cell-Projection Volume Render-
ing

In the cell-projection(CP) scheme[3], unstructured
grid volume data is rendered by the following three
steps(Figure 1). For simplicity of discussion, we
assume the cell to be a tetrahydra.

1. Projection Phase: Project a given three-
dimensional data(cell) into a two-dimensional
screen and find the projection area(�) for each
data(cell).

2. Scan Conversion Phase: Perform scan con-
version for each projected cell. More pre-
cisely, for each pixel � ��� �� in the projection



area(�) on the screen, calculate the cell’s con-
tribution (color(RGB) and opacity(�)) to pixel
� ��� �� and depth values (��������	�����) for
both the front and back intersection points
where the ray corresponding to pixel � ��� ��
intersects the cell. In the rest of this paper, we
refer to the data structure consisting of these
four parameters (RGB, �, ��������	�����) as
ray segment. As the result of the scan con-
version of a cell, ray segments for each pixel
in the projection area(�) are computed. For
every cell, compute the ray segments. After
that, for each pixel on the screen, gather the
ray-segments corresponding to the pixel and
make a depth-sorted list of these ray segments
(Figure 2).

3. Composition Phase: Given the ray-segment
lists for all pixels on the screen, calculate the
pixel value(color) by compositing the depth-
sorted ray segments in the ray-segment list
from front to back by alpha blending using
Porter-Duff’s over operation[5]. Now, we
finally obtain the volume rendered image.

Here, we have to note that, even in the scan
conversion phase, one may perform composition
of the neighboring ray segments in the ray-segment
list for a ray if these two ray-segments are derived
from the neighboring cells contacting each other
along the ray. We refer to this composition in the
scan conversion phase as partial composition[6]
(Figure 3).

The resultant of the partial composition of two
ray segments is again a ray segment. If we can
apply partial composition successfully when a new
ray-segment is inserted into the ray-segment list,
we can reduce the length of the ray-segment list
and list manipulation overhead due to the length of
the list.

Moreover, the opacity of a partially composed
ray segment is higher than the opacity of each
ray segment used in this partial composition. This
feature greatly helps us to develop the optimization
scheme described below.
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Figure 3: Partial Composition

3 Parallel Implementation

3.1 Fundamental Implementation

As we have mentioned before, the goal of our re-
search is volume visualization of simulation results
on a PC cluster. So, without a lack of generality,
we can assume that the unstructured volume data
has already been distributed among the nodes of
the PC cluster. However, we have to remenber that
the best data distribution pattern for the simulation
may not be the best pattern for the visualization.
This is the starting point of our parallel volume
rendering(PVR) implementation.

In the following discussion, we assume the sys-
tem has 
 working nodes(WNs) for computation
and one control node(CN) for global management
of the load distribution and user interface including
final image output.



Once the data(cell) has been generated and dis-
tributed among the working nodes (WNs), the
computation for the projection and scan conver-
sion phases can easily be parallelized since there
is no essential dependency between these compu-
tations for each cell. So, as the first step, each WN
performs the projection and scan conversion of the
cells which are assigned to the WN and generates
its own ray-segment lists.

When all WNs complete this computation, the
composition phase starts as the second step. Now,
we can utilize the pixel-level parallelism, so we
assign the computation for a certain region of
the screen to each WN and perform the parallel
composition as follows. For each pixel in the
assigned region, each node 1)gathers from other
nodes the ray-segment lists corresponding to the
pixel, 2)merges them into a single depth-sorted
ray-segment list, and then 3)calculates the pixel
value(color) by compositing the depth-sorted ray
segments in the ray-segment list from front to
back by alpha blending using Porter-Duff’s over
operation[5]. Now, each node finally obtains the
volume rendered image for its own region. Then,
each WN sends its image to the control node to
output the overall volume rendered image onto the
display. Though we cannot explain the detailed im-
plementation of the global composition phase due
to the page limit of this paper, we have adopted the
Binary-Swap Image Composition(BSC) scheme[7]
to reduce both the communication overhead and
the load imbalance.

We also refer to this composition phase as the fi-
nal composition phase or global composition phase
if we need to distinguish it from the partial(local)
composition in the scan conversion phase.

Our fundamental parallel implementation itself
is quite simple. The most important feature of our
fundamental implementation is that it aggressively
applies the partial composition in the scan conver-
sion phase so that it can reduce the data size of
each ray-segment list required for exchange in the
final composition phase.

The previous work by Ma, et al.[4] proposed
the parallel implementation which executes both
the scan conversion and (global) composition pro-
cesses concurrently. Matsui, et al. [8] have also
adopted a similar technique for their structured-
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Figure 4: Parallel Implementation

grid parallel volume rendering system. We also
considered adopting this idea. But our conclusion
has been negative so far, because 1)it may incur the
problem of frequent asynchronous interprocessor
communication, 2)our partial composition scheme
may reduce the cost of global composition and also
it can be thought of as a concurrent execution of
the projection phase and the composition phase,
and furthermore, 3)we are currently developing
a technique like pipelining which may hide the
cost(latency) of the global composition in some
other work.

3.2 Optimizations

3.2.1 Approximate Depth Sorting

By adopting partial composition, if the program
could process the scan conversion of the cells in
depth-sorted order, it could reduce the length of the
ray-segment list, and thus it could reduce the list
manipulation cost at the same time. However, the
depth order of cells may change pixel by pixel, in
general. So, it is diffic oult, or rather impossible, to
determine a perfect depth order of cells for volume
rendering.

Our solution to this issue is approximate depth
sorting which sorts the cells in the depth order of
their center of gravity. Instead of determining the
near-perfect depth order for paying the computa-
tional cost for both sorting and list manipulation,
as in an octree search, we chose a rather simple and
less costly sorting scheme, since the order of cells
should be recalculated every time the viewpoint
changes.



3.2.2 Early Ray Termination

Erly ray termination(ERT)[9] is an optimization
technique proposed for front-to-back ray-casting
volume rendering. The concept of ERT is that the
objects which are located behind less transparent
objects (voxel, cell, and so on) may have very
few or no contributions to the final pixel color
even in volume rendering, thus, it is possible to
terminate the composition computation along the
ray before the ray passes through the volume data
space. Therefore, the ERT contribute too much to
the reduction of the volume rendering cost, though
its effect depends on the opacity of each object[6].

Since ERT is a pixel-based optimization tech-
nique, it is easily implemented in the composi-
tion phase of our algorithm. However, the most
time-consuming process in cell-projection parallel
volume rendering(CP-PVR) is the scan conversion
time. Thus, if we could introduce the concept
of ERT in the scan-conversion phase, we could
reduce the computation time much more.

The ERT-table scheme[10] has been proposed
for this purpose. In the ERT-table scheme, the
decision of termination is made per region-base
instead of per pixel base. For this purpose, we
have introduced a small look up table, which we
call the ERT-table, which represents the status of
each region and indicates whether the opacities of
all pixels inside the region have already become
sufficiently high. In the ERT-table scheme, af-
ter computing the projection area(�) of a cell, it
checks the regional information of the ERT-table
corresponding to � to decide if scan conversion of
the cell is required. If the decision is ”no need,”
then the remaining process concerning the cell is
terminated.

An important feature of the ERT-table scheme
is that it checks only a sufficient, though not
necessary, condition for termination. This approx-
imation may possibly reduce the effect of ERT,
but it significantly reduces the cost to maintain
the information in the ERT-table and thus makes
it possible to apply the ERT technique in the scan
conversion phase.

Again, the partial composition used in our im-
plementation contributes to the increase of the
efficiency of ERT because it increases the opacity

of each ray segment.

3.2.3 Weak Sharing of ERT Information
among PCs

The previous section introduced the ERT technique
into cell-projection(CP) volume rendering by con-
figuring the ERT-table with each WN. Now, we
are going to extend this technique to our parallel
program(CP PVR). The fundamental idea is that
the accuracy, or completeness, of the information
in the ERT-table may increase if WNs exchange
their own information. The typical situation is as
follows. WNb holds cells which are located behind
the cells in WNa at a time when WNa terminates
its scan conversion due to ERT. In this case, WNb
has no need to continue its scan-conversion. If
WNa and WNb exchange the ERT information in
their ERT-tables, WNb can also benefit from ERT.
This is what we call ERT sharing. The frequent
exchange of ERT information may increase the ac-
curacy of ERT information; however, it may incur
undesired inter-processor communication. Thus,
we have introduced the weak sharing of ERT infor-
mation into our CP PVR program. The meaning
of weak sharing is that the frequency of ERT in-
formation exchange is far beneath the frequency of
ERT information updates at each WN.

4 Dynamic Load Balancing

4.1 Load Imbalance in CP PVR

In this section, we first discuss the three major
sources of load imbalance in our CP PVR program.

1. Load imbalance due to initial data distri-
bution: As we have mentioned before, the
goal of our research is volume visualization
of simulation results on a PC cluster. In this
case, the best data distribution pattern for the
simulation may not be the best pattern for the
visualization.

2. Load imbalance due to view dependency of
scan conversion time: The scan conversion
time of each cell is proportional to the size of
its projected area; thus, it may vary according



to the viewpoint. This is what we call the
view dependency of scan conversion time.

3. Load imbalance due to run-time feature of
ERT : The effect of ERT strongly depends on
the opacity of each cell and the viewing direc-
tion. Both the opacity and viewing direction
are the fundamental parameters for volume
visualization, and they frequently change dur-
ing the visualization. Thus, it is impossible
to estimate the effect on the computation of
ERT in advance.

Because of the irregularity of the unstructured
volume data, static load distribution such as re-
gional partitioning (3D-block cyclic[8], and so on)
does not help too much. The simple static load dis-
tribution scheme which distributes an equal num-
ber of cells to each WN may reduce the degree of
imbalance, but it cannot solve the second and third
sources of load imbalance.

The first two sources of load imbalance can
be solved by preprocessing once a viewpoint is
given. Previous work[4, 11]adopted such a pre-
processing based load balancing scheme. In this
scheme, researchers performed data redistribution
as a pre-processing phase, taking the effect of view
dependency into account. But, it cannot deal with
the third source of load imbalance. Furthermore,
it is hard to keep track of the quick movement of
the viewpoint.

In order to solve these three sources of load im-
balance, we chose the distributed work-stealing
scheme as the dynamic load balancing(DLB)
scheme for postprocessing. In this scheme, when a
working node(WN) completes the scan conversion
of its own cells, it receives the cells from another
WN which still has cells to be processed. Due to
the dynamic behavior of this scheme, it can easily
deal with the dynamic feature of the ERT effect.

4.2 Work Stealing

As we mentioned in Section 3, our CP PVR pro-
gram is composed of two different kinds of data
parallel regions(Figure 4). According to our pre-
liminary study[10], we find that the first region
which utilizes cell-based data parallelism is quite
dominant in the overall performance. We also find

that the second region (global composition phase)
is rather static compared to the first region, and
the cost of data migration to implement DLB is
relatively high in the second region. Therefore, we
apply the DLB scheme only to the cell-based par-
allel region, while the static load balancing scheme
is applied to the pixel-based parallel region.
(1)Amount of Data(cells) To Be Migrated At a
Time.

In order to implement the DLB scheme for
a PC cluster system, it is mandatory to lessen the
frequency of data migration. Furthermore, the total
of the data migration cost and the cost required to
process the migrated data should be comparable
to, or smaller than, the cost required to process the
remainding data after migration. Therefore, the
amount of data to be migrated at at time should
be adapted according to the amount of remainding
data. For this to be achievable, we chose a data
size based on a somewhat guided self-scheduling.
At the time of migration, 1�� of the remaining
cells are sent to the idle WN on request. Currently,
we have chosen 3 as x, based on the preliminary
experimental results.
(2)Node Selection Policy

For the simplicity of implementation, our cur-
rent DLB scheme relies on the CN to maintain
the information required to make decisions on
the source node of data migration. And inter-
node communication to gather any DLB-related
implementation is performed with polling-based
asynchronous messages, where each node weak-
periodically checks the arrival of messages.

The following three policies have already been
implemented as a node selection policy.
Random Scheme : The CN maintains the list of
busy WNs above a certain threshold which have
remaining cells to be processed. When the CN
receives requests for data migration from an idle
WN, it chooses a busy WN at random from the list
of busy WNs and informs the idle WN about the
selected WN.
Max-Remain Scheme: The CN maintains the list
of busy WNs, as in the random scheme. But the
CN also corrects the information about the amount
of remaining cells on each of the busy WNs. When
the CN receives requests for data migration from
an idle WN, it chooses the WN which may have



Figure 5: Sample Data (Human Aorta)

the biggest work to do from the list of busy WNs
and informs the idle WN about the selected WN.
Bounding Box Scheme: This scheme utilizes ge-
ometric information in order to find busy WNs. In
this scheme, each WN first computes the bounding
box for all cells inside the node. This can be done
simultaneously at an approximate depth-sorting
time without paying any cost. Once the bounding
box on each node is computed, WNs inform the
CN of their bounding box information. When the
CN receives requests for data migration from an
idle WN, it chooses the WN whose bounding box
overlaps the idle WN’s bounding box and informs
the idle WN about the selected WN. This scheme is
proposed in antcipation of the increase of the pos-
sibility of partial composition. We may possibly
implement this scheme without any intervention
of the CN if all WNs share their bounding box
information.

5 Evaluation

In this section, we evaluate the effect of the dy-
namic load balancing schemes.

For a relatively large sample of volume data,
we used segmented human aorta simulation
data(Figure 5). This dataset consists of 307,565 un-
structured cells of tetrahydra, with 62,475 vertices
in total. Figure 6 shows bounding box represen-
tations of the initial cell assignment viewed from
two orthogonal view directions, (A) and (B). The
rectangular boxes in these figures represent the
bounding-box of each WN. A almost equal number
of cells are assigned to each WN initially. An 8-
nodes PC cluster(Pentium4 3GHz, 1GbE) for WNs
and a 1-node PC(Pentium4 2GHz, 1GbE) for the
CN are used in our experiment.

Figure 7 shows how our DLB schemes im-

(a)Viewpoint(A) (b)Viewpoint(B)

Figure 6: Bounding Box Representations of Initial
Cell Assignment Viewed from Two Orthogonal
View Directions.

Table 1: Overall Effects
Scan Conversion Time Tsc[sec]

Optimization Level (A) (B)
Base 45.37 25.48
ERT 20.47 10.93

ERT + DLB 18.40 8.87
ERT + DLB + ERTsharing 15.82 5.89
ERT:Early Ray Termination
DLB:Dynamic Load Balancing

prove the load imbalance in the scan conversion
phase with ERT. The y-axis of this figure indi-
cates the scan conversion time(Tsc) at each WN
and the horizontal line labeled oracle indicates the
arithmetic mean of the scan conversion time of
each WN without applying DLB. From this figure,
we can confirm the effect of DLB. We can also
confirm that the max-remain scheme achieves the
best performance for both two viewpoints in this
environment. The bounding-box scheme was ex-
pected to perform the best for the viewpoint (B),
however, Figure 7(b) doesn’t show such a result.
It is because our current implementation of the
bounding-box scheme doesn’t consider the load
imbalance among WNs whose bounding boxes do
not overlap each other, and thus it somewhat re-
stricts the possibility of the load balancing. We
think this problem can be solved by combining the
bounding-box scheme and max-remain scheme.

Table 1 summarizes the overall effects of the
optmization techniques used in our CP-PVR pro-
gram. ”Base” stands for the parallel processing
without ERT and DLB. From this table, we can
confirm the 2.86- and 4.32-times speedup com-
pared to the ”Base” implementation for viewpoint
(A) and (B), respectively.
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Figure 7: Comparison of DLB Schemes

6 Conclusion

We have proposed a cell-projection parallel volume
rendering system for simultaneous visualization of
simulation results on a PC cluster. By adopting
the early ray termination and dynamic load bal-
ancing optimization techniques, it could achieve
a 4.32-times performance improvement in our ex-
perimental environment. We would like to further
investigate the various features of our program in
the near future.
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