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Abstract

This paper makes two proposals to speed up the Parallel Iterative Method,
which is based on the iterative strategy of the Berger-Munson algorithm.

The first proposal is to exploit finer-grained parallelism in the DP(Dynamic
Programming) procedure itself. This proposal makes the processing speed
proportional to the number of processors.

The second proposal is to apply the A* algorithm, a well known heuristic
search algorithm, instead of DP. A* reduces the search space using heuristics,
while DP traverses the whole space blindly.

We have implemented these two proposals on a parallel computer, the
AP1000. In a test of parallelizing DP, ten 1000-character sequences are aligned
by using 10 processors per one DP procedure at a speed 8.11 times faster than
sequential processing. By applying the A* algorithm to 30 sets of test prob-
lems, we obtain optimal alignment by reducing the search space by 95%.
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1 Introduction

Many computer-based methods for
aligning multiple protein sequences to
show common relationships have been
developed. One of them is the Paral-
lel Iterative Method[1], which is based
on the iterative strategy of the Berger-
Munson algorithm|2].

Figure 1 shows the Parallel Iterative
Method. The method aligns n(n > 2)

protein sequences as follows;

[. The unaligned sequences (the ini-
tial state) are divided into two sub-
groups.

II. From 2"~! — 1 possible partitions
for n sequences, a small number
of partitions are selected. Between
every pair of subgroups the opti-
mal alignment is computed by one
processor in parallel using group-
to-group DP-matching.

ITI. The alignment with the best score
is selected as the initial state for
the next iteration.

IV. This procedure is repeated until
the score of the resulting alignment
converges.

If step II is executed for all the possi-
ble partitions, the degree of parallelism
is 2" — 1. Such an implementation
is impractical and we are compelled to
limit the number of the sequences we
can align.

One solution to this problem is “the
restricted partitioning technique”[1].
This method doesn’t select all possible
partitions but only 1:n-1 partitions; n
sequences are divided into one subgroup
with n-1 sequences and the other with
1 sequence. The degree of parallelism is
n.
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Figure 2: Alignment by DP-matching

Figure 1 describes Parallel Iterative
Method with this technique. First, ini-
tial sequences are divided into 2 sub-
groups. There are 4 partitions such
as (a)-(b)(c)(d). Secondly, the optimal
alignment is computed in parallel. Of
four resultant alignments, that of par-
tition #3 is optimal and is selected as
the initial state of next iteration.

2 Proposal 1: Paral-

lelizing DP proce-
dure

Many of the alignment algorithms are
based on Dynamic Programming (DP)
and usually need much execution time.
We can reduce DP execution time
by parallelizing it. We extract finer-
grained parallelism in the DP-matching
procedure itself and compute the op-
timal alignment between every pair of
subgroup by plural processors in paral-
lel in step II of figure 1.

2.1 DP procedure

Figure 2 shows that the alignment is ob-
tained by finding the best path from the
top left node to the bottom right node
maximizing the similarity between hori-
zontal sequences and vertical sequences.
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Figure 1: Parallel Iterative Method

Each diagonal arc cost reflects the
similarities between the characters to
be compared. We use the Dayhoff ma-
trix [3], and reverse the sign of the el-
ements. For example, we use -17’ for
W-W while we see 177 in the Dayhoff
matrix. The horizontal and vertical arc
costs reflect the gap penalty. We use the
smallest value(-8) in the Dayhoff ma-
trix.

The sum of all costs of the arcs in the
best path is the measure of the similar-
ity of the sequences. We find the op-
timal alignment by finding the lowest-
cost path.

To find the lowest-cost path using DP
we proceed as follows; Each node has
3 nodes that reach the node by one
arc. Add each of the 3 arcs (horizon-
tal,vertical, and diagonal one) to the
cost of the lowest-cost path from the
start node to these nodes. Choose the
lowest value as the cost of the lowest-
cost path from the start node to the
node.

We conduct this procedure from the

top left node to the bottom right node.
In sequential processing, the DP pro-
cedure creates a 2 level nested DO-

ACROSS style loop.

2.2 How to parallelize DP
procedure

The AP1000 is a distributed memory
parallel computer. As for data parti-
tion, we adopted the column oriented
scheme as described in figure 3 taking
account of the items listed below.

target The goal is to simultaneously
align ten 1000-character sequences
at most in this system. But we
can align theoretically about 4000-
character sequences since each pro-
cessor of the AP1000 has 16MB lo-

cal memory!.

overhead caused by communication
Compared with the execution time

'For each processor [2/p memory space is
required when the sequence length is [ and the
number of processor is p.
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required at each node, we can’t
make light of the overhead caused
by communication between proces-
sors. We should decide the data
partition not to require too many
communications between proces-
SoTs.

In parallel processing, after processor
P; finishes the computation of its first
row and sends the cost of the lowest-
cost path to the rightmost node to the
right processor P;yq, P;yy can start its
computation. The parallel execution is
as shown in figure 3.

Implementation The AP1000 is
a MIMD, distributed memory parallel
computer with its processors connected
by a 2-dimensional torus net[4]. We re-
alized machine mapping as described in
figure 4.

Let n be the number of sequences to
be aligned and p be the number of pro-
cessors per one partition and let ¢ be

integer; 0,1,2... .

X direction Computations for
all partitions are executed in par-
allel. The degree of parallelism is
n.

Y direction Processor P, Ppiyi...
and  Pp(;;1)-1 compute the optimal
alignment in parallel for #: parti-

tion.
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2.3 Experimental results

In order to evaluate the degree of speed
enhancement of the parallelizing DP
procedure, we investigated the follow-
ing items in step II in figure 1.

T . Ezecution time by parallel processing
T . Ezecution time by sequential processing

S =T1/T, : Speed up rate

Figure 6 indicates the speed increase
achieved by parallelizing the DP proce-
dure. It shows that we can speed up
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Figure 6: Speed-up

DP procedure, especially with longer se-
quences.

As the sequence length is longer, the
overhead caused by communication be-
tween processors is relatively smaller
because the granularity coarsens. We
used random sequences in these ex-
periments, since the computation cost
needed for DP doesn’t depend on the
sequence data.

3 Proposal 2: Apply-
ing A* algorithm in-
stead of DP

The second proposal is to use the A*
algorithm[5] instead of the DP proce-

dure. The A* algorithm is a well known
heuristic search algorithm. It reduces
the search space using heuristics, while
DP traverses the whole space blindly.

Many fast algorithms that attack the
search space have been proposed. They
can be classified into 2 types. One
type are the algorithms which give fast,
though not necessarily optimal, align-
ment. For example, cutting out the
lower and upper triangular space can
speed up the execution. The other type
are the fast and optimal alignment al-
gorithms such as the one proposed by
Fickett[6].

The A* algorithm uses a heuristic
function to prune the search space and
we can select a suitable heuristic func-
tion & by exploiting the characteristics
of the sequences to be aligned.

The A* algorithm is not directly ap-
plicable because both positive and neg-
ative costs exist in the search space as
shown in figure 2. Our proposal is to
translate the search space to make all
costs positive which makes it possible
to apply the A* algorithm. Further-
more, we have devised a heuristics func-
tion which has small computation cost
and high pruning efficiency. Our pro-
posal exploits the characteristics of the
general alignment problem.

3.1 A* algorithm

The A* algorithm adopts the evaluation
function to allow the usage of heuristic
information. The purpose of the eval-
uation function is to provide a means
of ranking those nodes that are candi-
dates for expansion and so permit us to
determine which one is most likely to
be on the best path to the goal. Let
f be the evaluation function. Then by



f(n) we denote the value of this func-
tion at node n. We order nodes for ex-
pansion in increasing order of their f
values. The node having the smallest
f value is selected for expansion. The
evaluation function of the A* algorithm
is given below.

f(n) = g(n) + h(n)

g(n) represents the actual cost of the
minimal cost path from the start node
to node n. h(n) gives the actual cost
of the minimal cost path from node n
to the goal and h(n) is an estimate of
h(n). Thus f(n) is an estimate of the
cost of the minimal cost path from the
start node to the goal node that is con-
strained to go through node n.

O ... candidatesfor expansion

Start

Figure 7: A* search

Note that when h = 0, algorithm
A* is identical to Dijkstra’s[7]. Also
note that the dynamic programming
algorithms of Bellman are essentially
breadth-first search methods and / = 0
and g =the number of the arcs from
start point.

We shows below the theorems known
about the A* algorithm. For further de-
tails of these, see [5].

Theorem 1 The Admissibility of
A*

A* search algorithm is admissible if
for any graph it always terminates in an
optimal path to a goal whenever such a
path exists.

[fiz(n) < h(n) for all n, and if all arc
costs are positive, then algorithm A* is
admissible.

Theorem 2 The Optimality of A*
If the A* algorithm satisfies the condi-
tions given above, then for any graph
it never expands more nodes than any
other admissible algorithm.

3.2 Transformation of the

search space

In order to use the A* algorithm instead
of DP, we need to transform the search
space; all arc costs should be positive
to guarantee the admissibility and opti-
mality of A*, as mentioned in Theorem
1 and 2.

Figure 2 shows the search space. The
A* algorithm searches for the best path
in the space from the top left node to
the bottom right node minimizing the
total cost of arcs.

“¢” to them in

If we add a constant
order to make all the arc costs positive,
we can’t find the lowest-cost path. This
is because the more arcs the path con-
tains, the more “c¢”s are added to the
total cost of the path. This problem
can be solved as follows. If we add a
constant “2¢” to every diagonal arc cost

and “c” to every horizontal and vertical
arc cost, we can raise the cost equally

for any path.

Brief Proof Define n(i,j) as the
node located at row i, column j, the
start node as n(0,0), and the goal node
as n(l,l). [is the sequence length. If
we define H(z, ) as the number of hops



contained in any path from n(0,0) to
n(t, ), H(z,j) is given below. Let d be
the number of diagonal arcs contained
in the path.

H(i,j)=i+j—d

Assume that we count one diagonal
arc as “2 hops”, and the number of hop
H(z,7) is always ¢ + j for any path for
any v and j. As a result, if we add “¢”
per 1 hop, we can raise the cost equally
for any path. Thus we have transfor-
mated the search space and made all arc
costs positive. ll

3.3 Selection of the heuris-
tic function

The selection of the heuristic function
h is crucial in determining the heuris-
tic power of the A* algorithm. Setting
h equal to the highest possible lower
bound on h expands the fewest nodes
consistent with maintaining admissibil-
ity.

We show below how to estimate the
highest possible lower bound on A, tak-
ing account of the computation cost of
h. For all paths from the node n(z,7)
to the goal node n(l, 1), the paths which
can give the lowest cost are those that
go through mun(l — ¢,1 — j) diagonal
arcs and |: — j| horizontal or vertical
arcs showed in figure 8. That is be-
cause we set the diagonal arc cost higher
than any horizontal or vertical arc cost;
the total path cost is the lowest when
the path goes through as many diago-
nal arcs as possible.

We can estimate h as follows; the
path could be the lowest-cost path if it
went through the lowest diagonal cost
arc in every column, since we set the

columnj+1\

min]=  2*
sum[]= 13

Figure 8: Estimate of A

same cost (=gap penalty) to every hor-
izontal and vertical arc?.

Define C; ; as the cost of the diagonal
arc from n(¢z — 1,5 — 1) to n(¢,7) and
min[k] as the lowest cost in column £ ;
i.e. minlk] = mingefzi<o<iy Cm i

Define p as the gap penalty, and iL(n)
is given below. if ¢ < j,

!
h(n)= > min[k]+ i —j|xp

k=j+1

!
else h(n) = > min[k] + i —j| x p
k=141

Computation of h(n) Before start-
ing the search by A* algorithm, the
computation of the profile matriz (size:
22 x [, where “22” is the number of
all characters each of which means an
amino acid) has been finished with the
computation of 222 x [ times multiplica-
tion. Profile matriz is needed for deter-
mining all diagonal costs in the search
space. Now that profile matriz has been

2Tt is known that we can obtain biologi-
cally better alignment if we set the gap penalty
according to the length of insertion or dele-
tion [8]. Tt is possible to set the gap penalty in
this way with our proposal.



computed, we can find the least cost of
each column min[k] by the computation
o(l). Sumlj] is computed in advance as
follows;

sum[l] = min[l]
sum[l — 1] = min[l — 1] + min][l]

sum[l] = min[l] + min[2] + - - + min][l]

While traversing the node n(z, j) in the
search space, we can compute h(n) by
computing only h = sumlj]+|i — j| X p.

3.4 Experimental results

First we examined how much the search
space is reduced by the A* algorithm.
Figure 9 shows that 75 ~95% of the
nodes in the search space are pruned.

We used as experimental data in
these experiments a group of 6 ser-
ine protease (length=276 ~613) and a
group of 14 endonuclease (length=161
~ 184). Figure 9 shows the result of ex-
periments on 30 sequence pairs selected
randomly in the same group.

This figure also shows the relation-
ship between the pruning efficiency and
the similarity of the sequences. The
horizontal axis of figure 9 is the average
score per one column of the alignment.
We obtained the average score by di-
viding the total score® by the length of
the resultant alignment. The horizontal
axis reflects the similarity of the align-
ment. We observed that the higher the
similarity of the sequences is, the more
nodes are pruned.

Second, we examined the execution
time. Figure 10 shows the execution
time required for step II (in figure 1)
using sequential DP or A*. We used as

3Total score is obtained by reversing the
sign of total cost of resultant alignment
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Figure 9: Pruning efficiency of A*

experimental data in these experiments
random sequences which are very simi-
lar. The average pruning rate of these
data is 87.23% and the average score per
one column is 0.3.
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Figure 10: Execution time (DP vs. A¥)

While searching with the A* algo-
rithm, it is very important how to man-
age the OPEN list which is a list of can-

didate nodes for expansion. Whenever
we add a node to the OPEN list, we



need to sort and insert in a effective
manner. Therefore, we adopted heap as
the data structure. The results given
above were obtained by using heap.

4 Conclusion

We have made two proposals to speed
up the Paralle Iterative Method. We
have achieved speed increase by paral-
lelizing the DP procedure for any se-
quence data. The pruning rate by A* al-
gorithm depends on the similarity of the
sequences, but as figure 10 indicates,
the heap can manage many nodes at a
high speed. Actually our experiments
showed that it takes only 2.28 seconds
to traverse 57726 nodes by using heap.

Future Work We have applied the
A* algorithm to the Parallel Ttera-
tive Method; the 2-dimensional search
space. In the same manner, we could
apply it to the n-dimensional search
space. We will attempt to apply the A*
algorithm to the n-dimensional search
space.
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